refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15540 results
Sort by

Filters

Technology

Platform

accession-icon GSE3912
First bone marrow relapse with or without initial diagnosis
  • organism-icon Homo sapiens
  • sample-icon 113 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30010
Expression data from breast samples of postmenopausal women
  • organism-icon Homo sapiens
  • sample-icon 100 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The objective of the study was to comprehensively compare the genomic profiles in the breast of parous and nulliparous postmenopausal women to identify genes that permanently change their expression following pregnancy.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7440
Early Response and Outcome in High-Risk Childhood Acute Lymphoblastic Leukemia: A Childrens Oncology Group Study
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cure rate for childhood ALL has improved considerably in part because therapy is routinely tailored to the predicted risk of relapse. Various clinical and laboratory variables are used in current risk-stratification schemes, but many children who fail therapy lack adverse prognostic factors at initial diagnosis. Using gene expression analysis, we have identified genes and pathways in a NCI high-risk childhood B-precursor ALL cohort at diagnosis that may play a role in early blast regression as correlated with the Day 7 marrow status. We have also identified a 47-probeset signature (representing 41 unique genes) that was predictive of long term outcome in our dataset as well as three large independent datasets of childhood ALL treated on different protocols.

Publication Title

Gene expression signatures predictive of early response and outcome in high-risk childhood acute lymphoblastic leukemia: A Children's Oncology Group Study [corrected].

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3910
35 patients at diagnosis and relapse
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

35 paired samples from initial diagnosis and first marrow relapse. Genes and pathways differentiating diagnosis and relapse were identified. Potential therapeutic targets were also identified.

Publication Title

Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a Children's Oncology Group study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE3911
60 samples obtained at relapse
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Gene expression profiles were analyzed from 60 children with first bone marrow relapse. Genes and pathways differentiating early vs. late relapse were identified. Signatures predicting early response to therapy were also identified.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22306
Integrative genomics identifies molecular alterations that differentiate superficial spreading and nodular melanoma
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE22301
Gene expression data from melanoma cell lines and melanocyte controls
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearmans rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM.

Publication Title

Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE10345
Genome-wide analysis of transcriptional termination in E. coli
  • organism-icon Escherichia coli
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Transcription termination factor Rho is essential in enterobacteria. We inhibited Rho activity with bicyclomycin and used microarray experiments to assess Rho function on a genome-wide scale. Rho is a global regulator of gene expression that matches E. coli transcription to translational needs. Remarkably, genes that are most repressed by Rho are prophages and other horizontally-acquired portions of the genome. Elimination of these foreign DNA elements increases resistance to bicyclomycin. Although rho remains essential, such reduced-genome bacteria no longer require Rho cofactors NusA and NusG. Thus, Rho termination, supported by NusA and NusG, is required to suppress the toxic activity of foreign DNA.

Publication Title

Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli.

Sample Metadata Fields

Compound

View Samples
accession-icon GSE60987
Cardiac Purkinje cell versus ventricular myocyte gene profile
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Affymetrix array gene expression analysis using RNA isolated from Purkinje cells and ventricular myocytes from the Cntn2-EGFP/ a-MHC-Cre/ floxed-tdTomato compound transgenic dual fluorescence reporter mouse

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE31641
Expression data from treatment of human melanocytes with phenolic compounds
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Vitiligo, an acquired disorder characterized by depigmented skin patches, results from loss of epidermal melanocytes. Etiology of vitiligo is not clearly understood but environmental, biochemical, genetic, and immune factors play a role in its pathogenesis. There is evidence that melanocyte death is perpetuated by an autoimmune response that causes lesions to spread. 4-tertiary butyl phenol (4TBP) and monobenzyl ether of hydroquinone (MBEH) are phenolic compounds that are known as environmental causes of vitiligo. We used microarray to detail the global gene expression that occurs following exposure of melanocytes to 4-TBP or MBEH to identified distinct classes of up-regulated genes that may contribute to melanocyte loss in vitiligo. We show that human melanocytes exposed to 4-TBP and MBEH show increased production of some inflammatory cytokines. Interleukin-6 (IL6) and IL8, in particular, are expressed at the periphery of vitiligo lesions and may contribute to recruitment of immune components to the areas, perpetuating melanocyte loss.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact