The impact of the transcriptome-wide alternative splicing on proteomic-wide protein subcellular localization was investigated by analyzing RNA-Seq data.
No associated publication
Sex, Specimen part, Disease, Cell line
View SamplesMDA-MB-231 and T47D human breast cancer cells were chronically treated with the novel STAT3/5 inhibitor SH-4-54 for 60 and 30 days, respectively. Surviving treatment-resistant individual clones were isolated and characterized for their phosphorylated STAT3 and phosphorylated STAT5 status. 3 biological replicates of mRNA from a representative resistant clone derived from both MDA-MB-231 and T47D cells, in parallel with mRNA from their respective wild-type counterparts, was subjected to NextGeneration Sequencing to analyze changes in gene expression between untreated and resistant cells.
No associated publication
Sex, Specimen part, Cell line, Treatment
View SamplesRNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (?3) and another DNA binding domain (DBD) mutant with exon 4 deletion (?4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ?3 or ?4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value =0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ?3 compared to the ?4 mutant group. As both of the mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ?3 and ?4 mutant rats were emphasized and further analyzed in the companion article “ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation” (Khristi et al., 2018).
ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation.
No sample metadata fields
View SamplesThe goal of this study was to perform RNA-seq on postnatal day 12 mouse oocytes to quantify gene expression.
No associated publication
Sex, Specimen part, Disease, Cell line
View SamplesThe most frequent genetic alterations in melanoma are gain-of-function mutations in BRAF, which result in addiction to the RAF-MEK-ERK signaling pathway. Despite success of RAF and MEK inhibitors in treating BRAFV600 mutant tumors, a major challenge is the inevitable emergence of drug resistance, which often involves reactivation of the MAPK pathway. Interestingly, resistant tumors are often sensitive to drug withdrawal, suggesting that hyperactivation of the MAPK pathway is not tolerated. To further characterize this phenomenon, we generated isogenic models of inducible MAPK hyperactivation in BRAFV600E melanoma cells by overexpression of ERK2. Using this model system, we demonstrated that supra-physiological levels of MAPK signaling led to cell death, which was reversed by MAPK inhibitors. Whereas MAPK pathway inhibition led to cell stasis in BRAFV600E melanoma cells, MAPK hyperactivation induced cytotoxicity. Furthermore, complete tumor regression was observed in an ERK2 overexpressing xenograft model. To identify mediators of MAPK hyperactivation- induced cell death, we conducted a large-scale pooled screen which showed that only shRNAs against BRAF and MAP2K1 rescued loss of cell viability. This suggested that no single downstream ERK2 effector was required, consistent with pleiotropic effects on multiple cellular stress pathways. Intriguingly, the detrimental effect of MAPK hyperactivation could be partially attributed to secreted factors, and more than 100 differentially secreted proteins were identified. The effect of ERK2 overexpression was highly context dependent, as RAS/RAF mutant but not RAS/RAF wildtype melanoma were sensitive to this perturbation. This vulnerability to MAPK hyperactivation raises the possibility of a novel therapeutic approach for RAS/RAF mutant cancers.
No associated publication
Sex, Specimen part, Disease, Cell line, Treatment
View SamplesWe established gene expression profiles of diagnostic bone marrow samples of monozygotic twins with acute lymphoblastic leukemia. We established technical duplicates for each twin.
Prenatal origin of separate evolution of leukemia in identical twins.
Sex, Specimen part, Disease, Disease stage
View SamplesTranscriptome seqeunecing on 16 paired HCCs and non-tumorous livers to investigate the effect of HBV integration
No associated publication
No sample metadata fields
View Samplesold and young human cardiac fibroblasts plus those treated with rapamycin and methionine restriction or a combination of both
No associated publication
Sex, Specimen part
View SamplesNo description.
No associated publication
No sample metadata fields
View SamplesPTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol 3,4,5-triphosphate (PIP3), thereby opposing the activity of class I phosphatidylinositol 3-kinases (PI3Ks) that mediate growth and survival factors signaling through PI3K effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, we generated an RNAi-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal PTEN knockdown in the hematopoietic compartment produced highly disseminated T-cell leukemia (T-ALL). Surprisingly, reactivation of PTEN mainly reduced T-ALL dissemination but had little effect on tumor load in hematopoietic organs. Lymphoma infiltration into the intestine was dependent on CCR9 G-protein coupled receptor (GPCR) signaling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, GPCRs may play an unanticipated role in driving tumor growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumor maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.
No associated publication
No sample metadata fields
View Samples