refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 15375 results
Sort by

Filters

Technology

Platform

accession-icon GSE65350
Expression data from mouse embryo
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To understand the molecular mechanism by which regulate skeletal development, we attempted to identify transcription factors that were highly expressed in developing cartilage during the embryonic stage.

Publication Title

The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32646
GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer
  • organism-icon Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of the present study was to investigate the association of glutathione S-transferase P1 (GSTP1) expression with resistance to neoadjuvant paclitaxel followed by 5-fluorouracil/epirubicin/cyclophosphamide (P-FEC) in human breast cancers. The relationship of GSTP1 expression and GSTP1 promoter hypermethylation with intrinsic subtypes was also investigated. In this study, primary breast cancer patients (n = 123, stage II-III) treated with neoadjuvant P-FEC were analyzed. Tumor samples were obtained by vacuum-assisted core biopsy before P-FEC. GSTP1 expression was determined using immunohistochemistry, GSTP1 promoter methylation index (MI) using bisulfite methylation assay and intrinsic subtypes using DNA microarray. The pathological complete response (pCR) rate was significantly higher in GSTP1-negative tumors (80.0%) than GSTP1-positive tumors (30.6%) (P = 0.009) among estrogen receptor (ER)-negative tumors but not among ER-positive tumors (P = 0.267). Multivariate analysis showed that GSTP1 was the only predictive factor for pCR (P = 0.013) among ER-negative tumors. Luminal A, luminal B and HER2-enriched tumors showed a significantly lower GSTP1 positivity than basal-like tumors (P = 0.002, P < 0.001 and P = 0.009, respectively), while luminal A, luminal B and HER2-enriched tumors showed a higher GSTP1 MI than basal-like tumors (P = 0.076, P < 0.001 and P < 0.001, respectively). In conclusion, these results suggest the possibility that GSTP1 expression can predict pathological response to P-FEC in ER-negative tumors but not in ER-positive tumors. Additionally, GSTP1 promoter hypermethylation might be implicated more importantly in the pathogenesis of luminal A, luminal B and HER2-enriched tumors than basal-like tumors.

Publication Title

GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER-negative breast cancer.

Sample Metadata Fields

Age, Specimen part, Disease stage

View Samples
accession-icon GSE11478
Effect of corticosterone treatment on rat neuronal progenitor cells
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Exposure to excessive glucocorticoids, which are major mediators of the stress reaction, is detrimental to brain development related to an increased risk of psychiatric disorders. However, the molecular mechanism underlying the effect of excessive glucocorticoids on the developing brain remains largely unclear. To clarify the mechanism, we examined the effects of glucocorticoids on cultured neuronal progenitor cells (NPCs) from cerebral cortices from rat embryo. We performed comparative analysis using gene expression profiling of corticosterone- or vehicle-treated NPCs. Results provide insight into the effects of glucocorticoids in regulating genetic programs important for controlling NPCs properties.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45566
Expression data from Satb1- and control-transduced LSK Flt3- cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

How hematopoietic stem cells (HSCs) produce specific lineages is not well understood. We searched for key factors that direct HSC to lymphopoiesis. Comparing gene expression profiles for HSCs and early lymphoid progenitors revealed that Satb1, a global chromatin regulator, was significantly induced with lymphoid lineage specification. HSCs from Satb1-null mouse were defective in lymphopoietic activity in culture, and failed to reconstitute T-lymphopoiesis in wild-type recipients. Furthermore, Satb1-transduction in HSCs, as well as in embryonic stem cells, robustly promoted their differentiation toward lymphocytes in culture.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE69601
Expression data from patients of idiopathic portal hypertension
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Idiopathic portal hypertension (IPH) is characterized by portal hypertension due to obstruction or stenosis of the intrahepatic peripheral portal branches. Researchers have suggested that IPH may be attributed to intrahepatic peripheral portal vein thrombosis, splenic factors, abnormal autoimmunity, and related factors, however, the etiology of IPH remains unclear.

Publication Title

Comprehensive Screening of Gene Function and Networks by DNA Microarray Analysis in Japanese Patients with Idiopathic Portal Hypertension.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE42288
Comparative molecular assessment of implant adherent cells in smokers and non-smokers
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Objective: to Identify the effect of surface texture on the modulation of gene transcription of implant adherent cells as influenced by the smoking habits of the subjects.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE41446
Early molecular assessment of osseointegration in humans
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

To determine the early temporal wide genome transcription regulation by the surface topography at the bone-implant interface of implants bearing micro-roughened or superimposed nanosurface topology.

Publication Title

No associated publication

Sample Metadata Fields

Sex

View Samples
accession-icon GSE35976
Genome wide array analysis of endosseous implant adherent cellular phenotypes
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.1 ST Array (ragene11st)

Description

Objective: to identify the early molecular processes involved in osseointegration associated with a micro roughened and nanosurface featured implants.

Publication Title

Comparative molecular assessment of early osseointegration in implant-adherent cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE77459
Gene Expression Profile of Pulpitis
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

This study was aimed to identify the genetic contributors to pulpal pain and inflammation. Inflamed pulps were collected from patients diagnosed with irreversible pulpitis (n=6). Normal pulps from teeth extracted for various reasons served as controls (n=6). Pain level was assessed using a visual analog scale (VAS). Genome-wide microarray analysis was performed using Affymetrix GeneTitan Multichannel Instrument. The difference in gene expression levels were determined by the Significance Analysis of Microarray program using a false discovery rate (q-value) of 5%. Genes involved in immune response, cytokine-cytokine receptor interaction and signaling, integrin cell surface interactions, and others were expressed at relatively higher levels in the pulpitis group. Moreover, several genes known to modulate pain and inflammation showed differential expression in asymptomatic and mild pain patients compared to those with moderate to severe pain(>30mm on VAS). This exploratory study provides a molecular basis for the clinical diagnosis of pulpitis. With an enhanced understanding of pulpal inflammation, future studies on treatment and management of pulpitis and on pain associated with it can have a biological reference to bridge treatment strategies with pulpal biology.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE36970
KDM4B- and KDM6B-regulated genes in human mesenchymal stem cell osteogenic differentiation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To investigate how histone demethylases KDM4B and KDM6B may be involved in osteogenic commitment of mesenchymal stem cells (MSCs), we performed gene expression profiling and comparison on control, KDM4B- and KDM6B-knockdown MSCs at different stages of osteogenic differentiation.

Publication Title

Histone demethylases KDM4B and KDM6B promotes osteogenic differentiation of human MSCs.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact