Gene expression profiles of granulosa cells from rat ovarian follicles by Affymetrix rat whole genome array showed that twelve genes were up-regulated, while one gene down-regulated more than 1.5 folds in the normal developmental competence group compared with those in the poor developmental competence group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase and nerve growth factor receptor associated protein 1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2, which is involved in the regulation of extracellular matrix organization and biogenesis.
No associated publication
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part, Time
View SamplesTriple-negative breast cancer (TNBC) is an aggressive disease for which treatment options are limited and associated with severe toxicities.
No associated publication
Specimen part
View SamplesSatellite cells are responsible for the long-term regenerative capacity of adult skeletal muscle. The diminished muscle performance and regenerative capacity of aged muscle is thought to reflect progressive fibrosis and atrophy. Whether this reduction in muscle competency also involves a diminishment in the intrinsic regulation of satellite cell self-renewal remains unknown.
Inhibition of JAK-STAT signaling stimulates adult satellite cell function.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesIn embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part, Time
View SamplesLoss of the Atrx chromatin remodeling protein causes dysfunction and death of post-mitotic retinal interneurons in mice. Embryonic conditional deletion of Atrx from multipotent retinal progenitor cells results in the selective loss of the retinal inhibitory interneurons, namely amacrine and horizontal cells. The cell death occurs postnatally after the development of these cell types, peaking at postntal day 17 in the mouse retina. Identification of molecular factors and pathways that mediate the health and survival of these neurons may suggest novel therapeutic strategies for neuroprotection in ATR-X syndrome and other neurodegenerative diseases.
No associated publication
Sex, Specimen part
View SamplesEndothelial colony-forming cells (ECFCs) have been reported as promising cells for regenerative medicine thanks to their angiorepair properties. Transcription factors are primary determinants of the functional capacity of the cells and TAL1 has been shown as a critical regulator of endothelial lineage in both development and adult life. However, only few (three) TAL1 targets have been identified so far in mouse and human endothelial cells. This microarray experiment, where TAL1 expression was knocked-down, was designed to identify TAL1-dependent genes in primary human endothelial stem/progenitor cells.
Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes.
Treatment
View SamplesThe objective of this study was to reprogram peripheral blood-derived late-endothelial progenitor cells (EPCs) to a pluripotent state under feeder-free and defined culture conditions. Late-EPCs were retrovirally-transduced with OCT4, SOX2, KLF4, c-MYC, and iPSC colonies were derived in feeder-free and defined media conditions. EPC-iPSCs expressed pluripotent markers, were capable of differentiating to cells from all three germ-layers, and retained a normal karyotype. Transcriptome analyses demonstrated that EPC-iPSCs exhibit a global gene expression profile similar to human embryonic stem cells (hESCs). We have generated iPSCs from late-EPCs under feeder-free conditions. Thus, peripheral blood-derived late-outgrowth EPCs represent an alternative cell source for generating iPSCs.
Feeder-independent derivation of induced-pluripotent stem cells from peripheral blood endothelial progenitor cells.
Specimen part, Cell line
View SamplesIn embryonic stem cell (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors that regulate the ESC state are not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 Ubiquitin Ligase Protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses revealed that MKRN1 is a novel RNA-binding protein that exists within messenger ribonucleoprotein (mRNP) complexes in undifferentiated ESC populations. In accordance with its presence in mRNPs, MKRN1 is mobilized to stress granules (SG) upon arsenite-induced stress, yet MKRN1 is not required for SG formation. RIP-chip analysis revealed that MKRN1 associates with mRNAs encoding functionally related regulatory proteins involved in diverse processes such as cell differentiation, apoptosis, or secreted proteins. Thus, our unbiased systems level analyses supports a role for MKRN1 as a novel RNA-binding protein and a potential gene regulatory protein within the ESC GRN.
Integrative genomics positions MKRN1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network.
Sex, Specimen part
View Samples