refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12294 results
Sort by

Filters

Technology

Platform

accession-icon GSE19520
Transcriptome analysis of Arabidopsis thaliana G protein subunit mutants in response to abscisic acid (ABA)
  • organism-icon Arabidopsis thaliana
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Heterotrimeric G proteins mediate crucial and diverse signaling pathways in eukaryotes. To gain insights into the regulatory modes of the G protein and the co-regulatory modes of the G protein and the stress hormone abscisic acid (ABA), we generated and analyzed gene expression in G protein subunit single and double mutants of the model plant Arabidopsis thaliana.

Publication Title

Boolean modeling of transcriptome data reveals novel modes of heterotrimeric G-protein action.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61933
Pluripotent stem cells reveal novel erythroid activities of the GATA1 N-terminus
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE18042
Erythroid differentiation: G1E model
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of erythroid differentiation using Gata1 gene-disrupted G1E ER4 clone cells. Estradiol addition activates an ectopically expressed Gata-1-estrogen receptor fusion protein, triggering synchronous differentiation. 30 hour time course corresponds roughly to late burst-forming unit-erythroid stage (t=0 hrs) through orthochromatic erythroblast stage (t=30 hrs).

Publication Title

Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36787
Transcriptome profiling of trisomy 21 and euploid iPSC-derived hematopoietic progenitors expressing wtGATA1 or an amino-truncated isoform of GATA1, GATA1short (GATA1s).
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We generated human induced pluripotent stem cells (iPSCs) from trisomy 21 (T21) and euploid patient tissues with and without GATA1 mutations causing exclusive expression of truncated GATA1, termed GATA1short (GATA1s). Transcriptome analysis comparing expression levels of genes in GATA1s vs. wtGATA1-expressing progenitors demonstrated that GATA1s impairs erythropoiesis and enhances megakaryopoiesis and myelopoiesis in both T21 and euploid contexts in the iPSC-model system.

Publication Title

Pluripotent stem cells reveal erythroid-specific activities of the GATA1 N-terminus.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86002
ALD-PPAR/
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Alcoholic liver disease is a pathological condition caused by over-consumption of alcohol. Due to the high prevalence of morbidity and mortality associated with this disease, there remains a need to elucidate the molecular mechanisms underlying the etiology to develop new treatments. Since peroxisome proliferator-activated receptor-/ (PPAR/) modulates ethanol-induced hepatic effects, the present study examined alterations in gene expression that may contribute to this disease.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE49664
Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Combinatorial actions of relatively few transcription factors control hematopoietic differentiation. To investigate this process in erythro-megakaryopoiesis, we correlated the genome-wide chromatin occupancy signatures of four master hematopoietic transcription factors (GATA1, GATA2, SCL/TAL1 and FLI1) and three diagnostic histone modification marks with the gene expression changes that occur during development of primary megakaryocytes (MEG) and erythroblasts (ERY) from murine fetal liver hematopoietic stem/progenitor cells. We identified a robust, genome-wide mechanism of MEG-specific lineage priming by a previously described stem/progenitor cell-expressed transcription factor heptad (GATA2, LYL1, SCL/TAL1, FLI1, ERG, RUNX1, LMO2) binding to MEG-specific cis-regulatory modules in multipotential hematopoietic progenitors. This is followed by genome-wide GATA factor switching that mediates further induction of MEG-specific genes following lineage commitment. Interaction between GATA and ETS factors appears to be a key determinant of these processes. In contrast, ERY-specific lineage priming occurs is biased toward GATA2-independent mechanisms. In addition to its role in MEG lineage priming, GATA2 plays an extensive role in late megakaryopoiesis as a transcriptional repressor at loci defined by a specific DNA signature. Our findings reveal important new insights into how ERY and MEG lineages arise from a common bipotential precursor via overlapping and divergent functions of shared hematopoietic transcription factors.

Publication Title

Divergent functions of hematopoietic transcription factors in lineage priming and differentiation during erythro-megakaryopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-3186
Transcription profiling by array of Arabidopsis mutant for ire1 after treatment with tunicamycin
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis thaliana wild-type and ire1a/ire1b double mutant plants were treated with tunicamycin. RNA was extracted and subjected to microarray analysis.

Publication Title

Arabidopsis IRE1 catalyses unconventional splicing of bZIP60 mRNA to produce the active transcription factor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14222
Gene Expression Profiling of the SSC-Enriched Thy1+ and SSC-Depleted Thy1- Fractions of Prepubertal Mouse Testes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Self-renewal and differentiation of spermatogonial stem cells (SSCs) provides the foundation for testis homeostasis, yet mechanisms that control their functions in mammals are poorly defined. We used microarray transcript profiling to identify specific genes whose expression are augmented in the SSC-enriched Thy1+ germ cell fraction of mouse pup testes. Comparisons of gene expression in the Thy1+ germ cell fraction to the Thy1-depeleted testis cell population identified 202 genes that are expressed 10-fold or higher in Thy1+ cells. This database provided a mining tool to investigate specific characteristics of SSCs and identify novel mechanisms that potentially influence their functions.

Publication Title

Colony stimulating factor 1 is an extrinsic stimulator of mouse spermatogonial stem cell self-renewal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35561
Expression data from trisomy 21 and euploid induced pluripotent stem cell hematopoietic progenitors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We modeled human Trisomy 21 primitive hematopoiesis using induced pluripotent stem cells (iPSCs). Primitive multipotent progenitor populations generated from Trisomy 21 iPSCs showed normal proliferative capacity and megakaryocyte production, enhanced erythropoiesis and reduced myeloid development compared to euploid iPSCs.

Publication Title

Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21604
Biofilm dispersal of Hha13D6 vs. Hha and biofilm formation of Hha24E9 vs. Hha in E.coli K-12 BW25113 hha mutant in LBglu at 37oC
  • organism-icon Escherichia coli k-12
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

The global transcriptional regulator Hha of Escherichia coli controls hemolysin activity, biofilm formation, and virulence expressions. Earlier, we have reported that Hha represses initial biofilm formation and disperses biofilms as well as controls prophage excision in E. coli. Since biofilm dispersal is a promising area to control biofilms, here we rewired Hha to control biofilm dispersal and formation. The Hha variant Hha13D6 was obtained to have enhanced biofilm dispersal activity along with increased toxicity compared to wild-type Hha (Hha13D6 induces dispersal 60%, whereas wild-type Hha induces dispersal at early biofilms but not at mature biofilms). Toxic Hha13D6 caused cell death probably by the activation of proteases HslUV, Lon, and PrlC, and deletion of protease gene hslV with overproducing Hh13D6 repressed biofilm dispersal, indicating Hha13D6 induces biofilm dispersal through the activity of protease HslV. Furthermore, another Hha variant Hha24E9 was also obtained to decrease biofilm formation 4-fold compared to wild-type Hha by regulation of gadW, glpT, and phnF. However, the dispersal variant Hha13D6 did not decrease biofilm formation, while the biofilm variant Hha24E9 did not induce biofilm dispersal. Hence, Hha may have evolved two ways in response to environmental factors to control biofilm dispersal and formation, but both controlling mechanisms come from different regulatory systems.

Publication Title

Engineering global regulator Hha of Escherichia coli to control biofilm dispersal.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact