Single mutant msh1
Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance.
No sample metadata fields
View SamplesDouble mutant msh1 and recA3
Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance.
No sample metadata fields
View SamplesSoybean transcript fluctuations were observed in response to Rhizoctonia solani AG-1 IA causing Rhizoctonia foliar blight. The overall goal was to observe the general transcriptome fluctuations using RNAseq Illumina HiSeq analysis.
No associated publication
Specimen part, Disease
View SamplesComparing the gene expression patterns between wild type plant (Col-0) and MYB Over-expression plants.
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
No sample metadata fields
View SamplesIn depth temporal profiling of transcript changes at 10 time points during germination in Arabidopsis seed was carried out. The time course utilised, encompassed seed maturation, stratification, germination and post-germination and provided a global investigation into the tightly regulated, phasic changes that define seed germination.
In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis.
Specimen part, Disease, Time
View SamplesTranscriptomic analysis of gene expression during the differentiation of cell suspension cultures into tracheary elements using the biological system published by Pesquet et al., Current Biology (2010): tracheary element differentiation was triggered by externally supplying hormone-free habituated cell suspension cultures of Arabidopsis thaliana Col-0 with auxin, cytokinin and epibrassinolides; RNA samples extracted from 3 independent time-courses every 12h from 0h to 4 days were analyzed using ATH1 Arabidopsis Affymetrix micro-array
Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis.
Specimen part, Time
View SamplesThe translocase of the inner membrane 17-1 (Tim17-1) plays a defined role in germination in Arabidopsis thaliana
The mitochondrial protein import component, TRANSLOCASE OF THE INNER MEMBRANE17-1, plays a role in defining the timing of germination in Arabidopsis.
Specimen part, Time
View SamplesSoil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.
Crosstalk between Two bZIP Signaling Pathways Orchestrates Salt-Induced Metabolic Reprogramming in Arabidopsis Roots.
Specimen part
View SamplesMicroarray experiments were performed using Arabidopsis wild type plants (Col-0) and srk2cf double knockout mutants to investigate functions of two osmotic stress-activated protein kinases, SRK2C and SRK2F. Transcription profiles of wild type and mutants were compared under abscisic acid (ABA) treatment for 0, 1 and 4 h.
Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression.
Age, Time
View SamplesMicroarray experiments were performed using Arabidopsis wild type plants (Col-0) and srk2cf double knockout mutants to investigate functions of two osmotic stress-activated protein kinases, SRK2C and SRK2F. Transcription profiles of wild type and mutants were compared under drought stress for 0, 1 and 4 h.
Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression.
Age, Time
View Samples