This SuperSeries is composed of the SubSeries listed below.
A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype.
Sex
View SamplesMuscle biopsy samples were obtained from two groups of male subjects prior to endurance training. The samples were used to predict training responses.
Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans.
Sex
View SamplesThe molecular pathways which are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ~800 gene transcripts are regulated following 6 weeks of supervised endurance training in young sedentary males, referred to as the training responsive transcriptome (TRT). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as over-represented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9 and PAX3 were down-regulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, pro-angiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA level validation there were several DNA variants that associated with VO(2)max trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption.
A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype.
Sex
View SamplesBackground: The use of electrical pulses to enhance uptake of molecules into living cells have been used for decades. This technique, often referred to as electroporation, has become an increasingly popular method to enhance in vivo DNA delivery for both gene. therapy applications as well as for delivery of vaccines against both infectious diseases and cancer. In vivo electrovaccination is currently being investigated in several clinical trials, including DNA delivery to healthy volunteers. However, the mode of action at molecular level is not yet fully understood.
Skin electroporation: effects on transgene expression, DNA persistence and local tissue environment.
Specimen part
View Samples