refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 4872 results
Sort by

Filters

Technology

Platform

accession-icon GSE30747
AML mouse models
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30746
Expression data from murine Tet-off MLL-AF9/Ras acute myeloid leukemia cell lines following withdrawal of MLL-AF9
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To explore oncogene addiction programs in a genetically defined leukemia context we developed an AML mouse model driven by a conditional MLL-AF9 allele together with oncogenic Ras, which enabled us to examine the consequences of MLL-AF9 inhibition in established disease. In order to produce a tightly regulated system that was easy to monitor, we constructed two retroviral vectors containing dsRed-linked MLL-AF9 under control of a tetracycline response element promoter, and KrasG12D or NrasG12D linked to the Tet-off tet-transactivator, which activates TRE expression in a doxycycline repressible manner. Leukemias were generated by retroviral cotransduction of both vectors into hematopoietic stem and progenitor cells, which were transplanted into syngeneic mice. Cells harboring both constructs induced aggressive myelomonocytic leukemia. Five independent primary leukemia cell lines were established from bone marrow of terminal mice. Treatment of these lines with doxycycline rapidly turned off MLL-AF9 expression, and induced terminal myeloid differentiation and complete disease remission in vivo.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE30745
Expression data from murine acute myeloid leukemia (AML) cells following shRNA-mediated suppression of Myb
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Using an integrative approach combining a Tet-off conditional AML mouse model, global expression profiling following suppression of the driving MLL-AF9 oncogene, and a new Tet-on conditional shRNA expression system we have identified Myb as critical mediator of addiction to MLL-AF9. Suppression of Myb in established AML in vivo terminates aberrant self-renewal and triggers a terminal myeloid differentiation program that precisely phenocopies the effects of suppressing MLL-AF9. Remarkably, suppressing Myb effectively eradicates aggressive and chemotherapy resistant AML.

Publication Title

An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE19076
Expression data from wild type, Ring1B-/-, Eed-/-, and Ring1B/Eed double deficient mouse ES cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb complexes establish chromatin modifications for maintaining gene repression and are essential for embryonic development in mice. Here we use pluripotent embryonic stem (ES) cells to demonstrate an unexpected redundancy between Polycomb repressive complex 1 (PRC1) and PRC2 during the formation of differentiated cells. ES cells lacking the function of either PRC1 or PRC2 can differentiate into cells of the three germ layers, whereas simultaneous loss of PRC1 and PRC2 abrogates differentiation. On the molecular level the differentiation defect is caused by the derepression of a set of genes that is redundantly repressed by PRC1 and PRC2 in ES cells. Furthermore, we find that genomic repeats are Polycomb targets and show that in the absence of Polycomb complexes endogenous MLV elements can mobilize. This indicates a contribution of the PcG system to the defense against parasitic DNA and a potential role of genomic repeats in Polycomb mediated gene regulation.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE10463
Activation of aryl hydrocarbon receptor
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

VAF347 is a low molecular weight compound which inhibits allergic lung inflammation in vivo. This effect is likely due to a block of dendritic cell (DC) function to generate pro-inflammatory T-helper (Th) cells since VAF347 inhibits IL-6, CD86 and HLA-DR expression by human monocyte derived DC, three relevant molecules for Th-cell generation. Here we demonstrate that VAF347 interacts with the aryl hydrocarbon receptor (AhR) protein resulting in activation of the AhR signaling pathway. Functional AhR is responsible for the biological activity of VAF347 since, i) other AhR agonists display an identical activity profile in vitro, ii) gene silencing of wild type AhR expression or forced over-expression of a trans-dominant negative AhR ablates VAF347 activity to inhibit cytokine induced IL-6 expression in a human monocytic cell line and iii) AhR deficient mice are resistant to the compounds ability to block allergic lung inflammation in vivo. These data identify the AhR protein as key molecular target of VAF347 and its essential role for mediating the anti-inflammatory effects of the compound in vitro and in vivo.

Publication Title

Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP078574
Generating STAT3/5 resistant human breast cancer cell lines (MDA-MB-231 & T47D) using chronic treatment with SH-4-54
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1500

Description

MDA-MB-231 and T47D human breast cancer cells were chronically treated with the novel STAT3/5 inhibitor SH-4-54 for 60 and 30 days, respectively. Surviving treatment-resistant individual clones were isolated and characterized for their phosphorylated STAT3 and phosphorylated STAT5 status. 3 biological replicates of mRNA from a representative resistant clone derived from both MDA-MB-231 and T47D cells, in parallel with mRNA from their respective wild-type counterparts, was subjected to NextGeneration Sequencing to analyze changes in gene expression between untreated and resistant cells.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon GSE19492
Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconSentrix Mouse-6 Expression BeadChip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE30956
Expression data from pig BMDM treated with salmonella LPS
  • organism-icon Sus scrofa
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Description

Mouse bone marrow-derived macrophages (BMDM) grown in macrophage colony-stimulating factor (CSF-1) have been used widely in studies of macrophage biology and the response to toll-like receptor agonists. We investigated whether similar cells could be derived from the domestic pig. Cultivation of pig bone marrow cells for 5-7 days in presence of rhCSF-1 generated a pure population of BMDM that expressed the usual macrophage markers (CD14, CD16, CD163, CD172a), are potent phagocytic cells and produced tumor necrosis factor (TNF) in response to lipopolysaccharide (LPS). Bone marrow cells could be stored frozen and thawed, providing a renewable resource.

Publication Title

Pig bone marrow-derived macrophages resemble human macrophages in their response to bacterial lipopolysaccharide.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE15793
Expression profiling of skeletal muscle following acute 2-adrenergic stimulation
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Mouse Ref-6 V1

Description

Systemic administration of -adrenoceptor (-AR) agonists has been found to induce skeletal muscle hypertrophy and significant metabolic changes. In the context of energy homeostasis, the importance of -AR signaling has been highlighted by the inability of 13-AR-deficient mice to regulate energy expenditure and susceptibility to diet induced obesity. However, the molecular pathways and gene expression changes that initiate and maintain these phenotypic modulations are poorly understood. Therefore, the aim of this study was to identify differential changes in gene expression in murine skeletal muscle associated with systemic acute administration of the 2-AR agonist formoterol. Skeletal muscle gene expression (from murine tibialis anterior) was profiled at both 1 and 4 hours following systemic administration of the 2-AR agonist formoterol, using 46K Illumina(R) Sentrix BeadArrays. Illumina expression profiling revealed significant expression changes in genes associated with skeletal muscle hypertrophy, myoblast differentiation, metabolism, circadian rhythm, transcription, histones, and oxidative stress.

Publication Title

Expression profiling of skeletal muscle following acute and chronic beta2-adrenergic stimulation: implications for hypertrophy, metabolism and circadian rhythm.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE36542
Protein Arginine Methyltransferase 6 dependent gene expression and splicing: Association with breast cancer outcomes
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Protein arginine methyltransferase-6 (PRMT6) regulates steroid-dependent transcription and alternative splicing, and is implicated in endocrine system development and function, cell death, cell cycle, gene expression and cancer. Despite its role in these processes, little is known about its function and cellular targets in breast cancer. To identify novel gene targets regulated by PRMT6 in breast cancer cells, we used a combination of small interfering RNA (siRNA) and exon-specific microarray profiling in vitro, coupled to in vivo validation in normal breast and primary human breast tumours. This approach, which allows the examination of genome-wide changes in individual exon usage and total transcript levels, demonstrated PRMT6 knockdown significantly affected: (i) the transcription of 159 genes, and (ii) alternate splicing of 449 genes. Importantly, the levels of PRMT6 itself were significantly decreased in breast cancer, relative to normal breast tissue. The PRMT6 dependent transcriptional and alternative splicing targets identified in vitro, were validated in human breast tumours. Notably, expression of PRMT6 and the corresponding gene signature, correlated with decreased probability of relapse-free or distant metastasis free survival in ER+ breast cancer. These results suggest that dysregulation of PRMT6 dependent transcription and alternative splicing may be involved in breast cancer pathophysiology and the molecular consequences identifying a unique and informative biomarker profile.

Publication Title

Protein arginine methyltransferase 6-dependent gene expression and splicing: association with breast cancer outcomes.

Sample Metadata Fields

Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact