This SuperSeries is composed of the SubSeries listed below.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesPancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesPancreatic islet beta cell failure causes type 2 diabetes (T2D). The IMIDIA consortium has used a strategy entailing a stringent comparative transcriptomics analysis of islets isolated enzymatically or by laser microdissection from two large cohorts of non-diabetic (ND) and T2D organ donors (OD) or partially pancreatectomized patients (PPP). This work led to the identification of a signature of genes that were differentially expressed between T2D and ND regardless of the sample type (OD or PPP). This signature includes 19 genes, of which 9 have never been previously reported to be differentially expressed in T2D islets. The PPP cohort also includes samples from individuals with impaired glucose tolerance (IGT) or recent onset diabetes associated with a pancreatic exocrine disorder (T3cD). Notably, none of the 19 signature genes of T2D islets were significantly dysregulated in islets of subjects with IGT or T3cD, suggesting that their changed expression reflects beta cell deterioration rather than a deficit preceding it.
Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes.
Age
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.
Specimen part
View SamplesAlthough excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPAR/ is known to control cutaneous repair and UV-induced cancer development. Here, we describe a novel PPAR/-dependent molecular cascade involving TGF-1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes, and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation.
Specimen part
View SamplesPlatelet reactivity (PR) in cardiovascular (CV) patients is variable between individuals and modulates clinical outcome. However, the determinants of platelet reactivity are largely unknown. Integration of data derived from high-throughput omics technologies may yield novel insights into the molecular mechanisms that govern platelet reactivity. The aim of this study was to identify candidate genes modulating platelet reactivity in aspirin-treated cardiovascular patients PR was assessed in 110 CV patients treated with aspirin 100mg/d by aggregometry using several agonists. 12 CV patients with extreme high or low PR were selected for transcriptomics, proteomics and miRNA analysis.
New molecular insights into modulation of platelet reactivity in aspirin-treated patients using a network-based approach.
Specimen part
View SamplesGlucose is the most important metabolic substrate of the retina and maintenance of nor-moglycemia is an essential challenge for diabetic patients. Glycemic excursions could lead to cardiovascular disease, nephropathy, neuropathy and retinopathy. We recently showed that hy-poglycemia induced retinal cell death in mouse via caspase 3 activation and glutathione (GSH) decrease. Ex vivo experiments in 661W photoreceptor cells confirmed the low-glucose induction of death via superoxide production and activation of caspase 3, which was concomitant with a decrease of GSH content. We evaluate herein retinal gene expression 4 h and 48 h after insulin-induced hypoglycemia. Microarray analysis demonstrated clusters of genes whose expression is modified by hypoglycemia and we discuss the potential implication of those genes in retinal cell death. In addition, we highlight, by gene set enrichment analysis, three important pathways, including KEGG lysosomes, KEGG GSH metabolism and REACTOME apoptosis pathways. We tested the effect of recurrent hypoglycemia (three successive 5h periods of hypoglycemia separated by 48 h recovery) on retinal cell death. Interestingly, exposure to multiple hypoglycemic events prevents retinal cell death and GSH decrease, or adapts the retina to external stress by restoring GSH level comparable to control situation. We hypothesize that scavenger GSH is a key compound in this apoptotic process, and maintaining normal GSH level, as well as a strict glycemic control, may represent a therapeutic challenge in order to avoid side effects of diabetes, especially diabetic retinopathy.
Biological Characterization of Gene Response to Insulin-Induced Hypoglycemia in Mouse Retina.
Sex, Age, Specimen part
View SamplesThe mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
Age, Specimen part
View Samples