refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14 results
Sort by

Filters

Technology

Platform

accession-icon GSE81014
Transcriptionally inactive ATF2 variant drives melanomagenesis
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE81013
Transcriptionally inactive ATF2 variant drives melanomagenesis [Array]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Characterized by striking metastatic propensity and chemoresistance, melanoma is among the most lethal cutaneous malignancies. The transcription factor ATF2 was shown to elicit oncogenic activities in melanoma, and its inhibition attenuates melanoma development. Here, a mouse model engineered to express a transcriptionally inactive form of Atf2 (Atf2?8,9) was found to be sufficient to induce nevi formation and, when crossed with BrafV600E animals, to promote melanoma development. The cross of Atf2?8,9 with BrafV600E;Pten-/- mice augmented pigmentation, tumorigenicity, and metastasis. Similar to mouse Atf2?8,9, the human ATF2 splice variant 5 enhanced growth and migration capacity of cultured melanoma and immortalized melanocytes. Induced Melan-A, CXCL9, S100A8, CCR7 expression, seen in Atf2?8,9-driven tumors associate with their enhanced pigmentation, immune infiltration and propensity to metastasize. Notably, elevated ATF2SV5 expression in melanoma specimens coincided with poor prognosis. The gain-of-function activity elicited by the truncated ATF2 form offers unexpected insight into mechanisms underlying melanoma development and progression.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE56348
Gene expression microarray profiling in mice hearts with pathological and physiological cardiac hypertrophy
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Compelling evidence suggests that mitochondrial dysfunction contributes to the pathogenesis of heart failure, including defects in the substrate oxidation, and the electron transport chain (ETC) and oxidative phosphorylation (OXPHOS). However, whether such changes occur early in the development of heart failure, and are potentially involved in the pathologic events that lead to cardiac dysfunction is unknown. To address this question, we conducted transcriptomic/metabolomics profiling in hearts of mice with two progressive stages of pressure overload-induced cardiac hypetrophy: i) cardiac hypertrophy with preserved ventricular function achieved via transverse aortic constriction for 4 weeks (TAC) and ii) decompensated cardiac hypertrophy or heart failure (HF) caused by combining 4 wk TAC with a small apical myocardial infarction. Transcriptomic analyses revealed, as shown previously, downregulated expression of genes involved in mitochondrial fatty acid oxidation in both TAC and HF hearts compared to sham-operated control hearts. Surprisingly, however, there were very few changes in expression of genes involved in other mitochondrial energy transduction pathways, ETC, or OXPHOS. Metabolomic analyses demonstrated significant alterations in pathway metabolite levels in HF (but not in TAC), including elevations in acylcarnitines, a subset of amino acids, and the lactate/pyruvate ratio. In contrast, the majority of organic acids were lower than controls. This metabolite profile suggests bottlenecks in the carbon substrate input to the TCA cycle. This transcriptomic/metabolomic profile was markedly different from that of mice PGC-1a/b deficiency in which a global downregulation of genes involved in mitochondrial ETC and OXPHOS was noted. In addition, the transcriptomic/metabolomic signatures of HF differed markedly from that of the exercise-trained mouse heart. We conclude that in contrast to current dogma, alterations in mitochondrial metabolism that occur early in the development of heart failure reflect largely post-transcriptional mechanisms resulting in impedance to substrate flux into the TCA cycle, reflected by alterations in the metabolome.

Publication Title

Energy metabolic reprogramming in the hypertrophied and early stage failing heart: a multisystems approach.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE69410
Myc-driven medulloblastoma cells treated with Panobinostat (LBH589)
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mouse MycT58A/DNp53 (MP) medulloblastoma cells were treated with DMSO or HDAC inhibitor (HDACi) panobinostat for 6 or 12 hours in vitro.

Publication Title

No associated publication

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE55587
Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The tumor microenvironment plays a critical role in cancer progression, but the precise mechanisms by which stromal cells influence the tumor epithelium are poorly understood. The signaling adapter p62 has been implicated as a positive regulator of epithelial tumorigenesis; however, its role in the stroma is unknown. We show here that p62 levels are reduced in the stroma of several tumors. Also, orthotopic and organotypic studies demonstrate that the loss of p62 in the tumor microenvironment or stromal fibroblasts resulted in increased tumorigenesis of epithelial prostate cancer cells. The mechanism involves the regulation of cellular redox through an mTORC1/c-Myc pathway of stromal glucose and amino acid metabolism. Inhibition of the pathway by p62 deficiency results in increased stromal IL-6 production, which is required for tumor promotion in the epithelial compartment. Thus, p62 is an anti-inflammatory tumor suppressor that acts through modulation of metabolism in the tumor stroma.

Publication Title

Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45123
Single Feature Polymorphism (SFP) Data from Drosophila Genomic DNA
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Natural populations of the fruit fly, Drosophila melanogaster, segregate genetic variation that leads to cardiac disease phenotypes. Drosophila is well-known as a model for studying the mechanisms by which human disease genes cause pathology, including heart disease, but it is less well appreciated that they may also model the genetic architecture of disease, since flies presumably also have diseases that have a genetic basis. It is reasoned that most of these aberrant inbred line effects would be due to capture of rare variants of large effect as homozygotes, allowing the variants to be mapped rapidly using contemporary genomic approaches.

Publication Title

Complex genetic architecture of cardiac disease in a wild type inbred strain of Drosophila melanogaster.

Sample Metadata Fields

Age

View Samples
accession-icon GSE43798
Microarray of cardiac biventricle from PGC-1a-/-bf/f/MerCre mice
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The following abstract from the submitted manuscript describes the major findings of this work.

Publication Title

A role for peroxisome proliferator-activated receptor γ coactivator-1 in the control of mitochondrial dynamics during postnatal cardiac growth.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28037
Gene expression data from WT and SREBP-1a deficient macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression from bone-marrow drived macrophages of WT and SREBP-1a deficient mice

Publication Title

Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71057
Gene expression profiling of 12 month old male C57Bl6 SART+/- liver tumor versus wild-type liver
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aim of study was to determine what was causing the liver tumors in the SART1+/- mice

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE77212
Gene expression profiling in primary human skeletal myotubes with small molecule inhibitors of lipid accumulation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The development of insulin resistance is strongly associated with accumulation of intracellular lipid in tissues outside of adipose including skeletal muscle, liver and heart. In obese humans, intramyocellular lipid (IMCL) is negatively correlated with whole body insulin sensitivity. The skeletal myocyte imports fatty acids (FA) into the cell from circulating free fatty acids or lipoprotein particles such as VLDL, to support energy production. Once transported into the cell, FAs are oxidized for ATP production, used to build membranes, or stored as triglyceride. However, in the long term, increased delivery of fatty acids can exceed mitochondrial oxidative capacity and set the stage for a vicious cycle of cellular lipotoxicity. We have recently identified a novel small molecule inhibitor of lipid accumulation in skeletal mycytes termed SBI-477. Microarray transcriptomics was performed in primary human skeletal myotubes following oleate loading and treatment with SBI-477. This was also compared to A922500, a diacylglycerol transferase 1 (DGAT1) inhibitor. SBI-477 treatment reversed many of the transcriptomic effects of oleate loading in these cells but also produced a transcriptomic profile distinct from the DGAT1 inhibitor.

Publication Title

MondoA coordinately regulates skeletal myocyte lipid homeostasis and insulin signaling.

Sample Metadata Fields

Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact