refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE71695
Characterization of RA839, a non-covalent small-molecule binder to Keap1 and selective activator of Nrf2 signalling
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The activation of the transcription factor NF-E2-related factor 2 (Nrf2) maintains cellular homeostasis in response to oxidative stress by the regulation of multiple cytoprotective genes. Without stressors the activity of Nrf2 is inhibited by its interaction with the kelch-like ECH-associated protein 1 (Keap1). Here, we describe RA839, a small molecule that binds non-covalently to the Nrf2-interacting kelch domain of Keap1 with a Kd of approximately 6 M, as demonstrated by X-ray co-crystallization and isothermal titration calorimetry. Whole-genome DNA arrays showed that at 10 M RA839 significantly regulated 105 genes in bone marrow-derived macrophages. Canonical pathway mapping of these genes revealed an activation of pathways linked with Nrf2 signalling. These pathways were also activated after the activation of Nrf2 by the silencing of Keap1 expression. RA839 regulated only two genes in Nrf2 knockout macrophages. Similar to the activation of Nrf2 by either silencing of Keap1 expression or by the reactive compound CDDO-Me, RA839 prevented the induction of both inducible nitric oxide synthase expression and nitric oxide release in response to lipopolysaccharides in macrophages. In mice RA839 acutely induced Nrf2-target gene expression in liver. RA839 is a selective inhibitor of the Keap1/Nrf2 interaction and a useful tool compound to study the biology of Nrf2.

Publication Title

Characterization of RA839, a Noncovalent Small Molecule Binder to Keap1 and Selective Activator of Nrf2 Signaling.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE80956
Chronic activation of hepatic Nrf2 has no major effect on fatty acid and glucose metabolism in adult mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transcription factor NF-E2-related factor 2 (Nrf2) induces cytoprotective genes, but has also been linked to the regulation of hepatic energy metabolism. In order to assess the pharmacological potential of hepatic Nrf2 activation in metabolic disease, Nrf2 was activated over 8 weeks in mice on Western diet using two different siRNAs against kelch-like ECH-associated protein 1 (Keap1), the inhibitory protein of Nrf2. Whole genome expression analysis followed by pathway analysis demonstrated that the suppression of Keap1 expression induced genes that are involved in anti-oxidative stress defense and biotransformation, pathways proving the activation of Nrf2 by the siRNAs against Keap1. The expression of neither fatty acid- nor carbohydrate-handling proteins was regulated by the suppression of Keap1. Metabolic profiling of the animals did also not show effects on plasma and hepatic lipids, energy expenditure or glucose tolerance by the activation of Nrf2. The data indicate that hepatic Nrf2 is not a major regulator of intermediary metabolism in mice.

Publication Title

Chronic Activation of Hepatic Nrf2 Has No Major Effect on Fatty Acid and Glucose Metabolism in Adult Mice.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE154554
Liver-specific knockdown of class IIa HDACs has limited efficacy on glucose metabolism but entails severe organ side effects in mice
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment of metabolic diseases. For that, siRNAs selectively targeting HDAC4, 5 and 7 were selected and used to achieve a combinatorial knockdown of these three class IIa HDAC isoforms. Subsequently, the hepatocellular effects as well as the impact on glucose and lipid metabolism were analyzed in vitro and in vivo. The triple knockdown resulted in a statistically significant decrease of gluconeogenic gene expression in a murine hepatic cell line as well as in human primary hepatocytes. Despite a similar HDAC-induced downregulation of hepatic genes involved in gluconeogenesis in mice using a liver-specific lipid nanoparticle siRNA formulation, the in vivo effects on whole body glucose metabolism were only limited and did not outweigh the safety concerns observed by histopathological analysis in spleen and kidney. Mechanistically, Affymetrix gene chip analysis and gene expression studies provide evidence that class IIa HDACs directly target and thus regulate the expression of HNF4α and FOXP1 in the liver, thereby modifying gene regulatory mechanisms mediating glucose and lipid metabolism and transport. In conclusion, the combinatorial knockdown of HDAC4, 5 and 7 by therapeutic siRNAs affected multiple pathways in vitro and in vivo leading to the downregulation of genes involved in gluconeogenesis. However, the effects on the gene expression level were not paralleled by a significant reduction of gluconeogenesis in mice, as shown in pyruvate tolerance tests. However, the liver-specific inhibition of these HDAC isoforms was associated with severe adverse effects in vivo, making this approach not a viable treatment option for chronic metabolic disorders like type 2 diabetes.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-TOXM-17
Transcription profiling of mouse lymphoma L5178Y cells treated with Hydroxyurea
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The multi-lab International Life Sciences Institute (ILSI) project on the application of genomics to risk assessment offered the unique opportunity to investigate the influence of variability within and between laboratories on identifying biologically relevant gene expression changes. We assessed the gene expression profiles of mouse lymphoma L5178Y cells treated with hydroxyurea (HU) in three independent studies from two different laboratories, Sanofi-Aventis and Procter and Gamble. Cells were dosed for 4 hr and harvested immediately at the end of the treatment or after a 20-hr recovery period. Cytotoxicity and genotoxicity were evaluated by standard assays. Statistical analysis of these data revealed that, while gene expression responses to HU treatment were markedly different at 4 hr vs. 24 hr, there was otherwise a consistent pattern of dose-response across the three studies. Therefore, the studies were merged and each time point was evaluated separately. At 4 hr, we identified 173 (P lt 0.0001) dose-responsive genes with a common trend in all three studies. These were mainly associated with the cell cycle, DNA repair and DNA metabolism, and in particular, the intra-S and G2/M phase checkpoints. At 24 hr, we identified 434 dose-responsive genes common across studies. These genes were involved in lymphocyte-specific activities and the activation of apoptosis via the caspase cascade. Our results show that despite inter-laboratory variability, combining the three studies in a single statistical analysis identifies more significantly-modulated genes than in any of the individual studies, due to improved statistical sensitivity. The genes identified in our study provide information that is relevant to HU biology.

Publication Title

Laboratory variability does not preclude identification of biological functions impacted by hydroxyurea.

Sample Metadata Fields

Sex, Disease, Disease stage, Compound, Time

View Samples
accession-icon GSE65892
Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network De-regulation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines. Treatment with anti-miR-21, but not with a mismatch control anti-miR, resulted in significant de-repression of direct targets of miR-21 and led to loss of viability in the majority of HCC cell lines tested. Robust induction of caspase activity, apoptosis and necrosis was noted in anti-miR-21 treated HCC cells. Furthermore, ablation of miR-21 activity resulted in inhibition of HCC cell migration and suppression of clonogenic growth. To better understand the consequences of miR-21

Publication Title

Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE59808
Expression data from AML cell lines
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Post-chemotherapy relapse presents a major unmet medical need in AML where treatment options are limited. We used gene expression profile from 32 AML cell lines to characterize expression difference between responder and non-responders to PIM inhibitors. Our results highlight the importance of STAT5 and MYC in rendering cancer cells sensitive to PIM inhibitors.

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE51739
Anticancer properties of distinct antimalaria drug classes
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Antimalarials have anticancer potential. Results: We have systematically tested five distinct antimalaria drugs in a panel of cancer cell lines. Conclusion: Three antimalarial classes display potent antiproliferative activity, and their potency is correlated with cancer cell gene expression patterns. Significance: We confirm and extend anticancer potential of these antimalarials and we discuss their therapeutic potential based on clinical data.

Publication Title

Anticancer properties of distinct antimalarial drug classes.

Sample Metadata Fields

Sex, Age, Cell line

View Samples
accession-icon GSE138118
Expression profile of Urothelial carcinoma of the urinary bladder (UCB) or bladder cancer from Blood
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The main aim of this study was to assess the changes in blood gene expression in UCB patients and to identify genes serving as biomarkers for UCB diagnosis and progression.

Publication Title

A Specific Blood Signature Reveals Higher Levels of S100A12: A Potential Bladder Cancer Diagnostic Biomarker Along With Urinary Engrailed-2 Protein Detection.

Sample Metadata Fields

Age

View Samples
accession-icon GSE13059
Expression data from short-time cultured primary cells derived from colorectal adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Time course comparison to tissue origin and with control cell line HT29 derived from colorectal adenocarcinoma.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35478
Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background: Isolation and characterization of tumourigenic colon cancer initiating cells may help to develop novel diagnostic and therapeutic procedures. Methods: We characterized a panel of fourteen human colon carcinoma cell lines and their corresponding xenografts for the surface expression of different potential stem cell markers: CD133, CD24, CD44, CDCP1 and CXCR4. In five cell lines and nine xenografts mRNA expression of the investigated markers was determined. Tumour growth behaviour of CD133+, CD133- and unsorted SW620 cells was evaluated in vivo. Results: All surface markers showed distinct expression patterns in the examined tumours. Analyses of the corresponding xenografts revealed a significant reduction of cell numbers expressing the investigated markers. CD44 and CXCR4 mRNA expression correlated within the cell line panel and CD44 and CDCP1 within the xenograft panel, respectively. Small subpopulations of double and triple positive cells could be described. SW620 showed significantly higher take rates and shorter doubling times in vivo when sorted for CD133 positivity. Conclusion: Our data support the hypothesis of a small subset of cells with stem cell-like properties characterized by a distinct surface marker profile. In vivo growth kinetics give strong relevance for an important role of CD133 within the mentioned surface marker profile.

Publication Title

Characterization of colon cancer cells: a functional approach characterizing CD133 as a potential stem cell marker.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact