Laminar shear stress due to constant blood flow is known to play a critical role in maintaining vascular health. In contrast, endothelial cell senescence appears to be closely associated with the incidence of vascular disorder. In an attempt to identify functional biomarkers for age-related vascular health/disease, the present study investigated differential gene expression of young and senescent human umbilical vein endothelial cells (HUVECs) under static and laminar shear stress.
Differential gene expression in young and senescent endothelial cells under static and laminar shear stress conditions.
No sample metadata fields
View SamplesThe E3 ubiquitin -protein ligases (E3s) plays a role as regulators of protein trafficking and degradation. We aimed to identify E3s in rat kidney which are associated with dDAVP-induced urine concentration.
E3 ubiquitin-protein ligases in rat kidney collecting duct: response to vasopressin stimulation and withdrawal.
Sex, Specimen part
View SamplesTime-course analysis of adipocyte gene expression profiles response to high fat diet. The hypothesis tested in the present study was that in diet-induced obesity, early activation of TLR-mediated inflammatory signaling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches targeting visceral adipose tissue genes altered early by HFD feeding may help ameliorate the deleterious effects of a diet-induced obesity.
Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity.
Age, Specimen part, Treatment, Time
View SamplesCore diet-induced obesity networks were constructed using Ingenuity pathway analysis (IPA) based on 332 high-fat diet responsive genes identified in liver by time-course microarray analysis (8 time-points over 24 weeks) of high-fat diet fed mice compared to normal diet fed mice. IPA identified five core diet-induced obesity networks with time-dependent gene expression changes in liver. When we merged core diet-induced obesity networks, Tlr2, Cd14 and Ccnd1 emerged as hub genes associated with both liver steatosis and inflammation and were altered in a time-dependent manner. Further protein-protein interaction network analysis revealed Tlr2, Cd14 and Ccnd1 were inter-related through the ErbB/insulin signaling pathway. Dynamic changes occur in molecular networks underlying diet-induced obesity. Tlr2, Cd14 and Ccnd1 appear to be hub genes integrating molecular interactions associated with the development of NASH. Therapeutics targeting hub genes and core diet-induced obesity networks may help ameliorate diet-induced obesity and NASH.
Time-dependent network analysis reveals molecular targets underlying the development of diet-induced obesity and non-alcoholic steatohepatitis.
Age, Specimen part
View SamplesFrom a long time ago, supplementation of fermented enzyme foods could have worked health effects on the body in the east nevertheless, only a few studies reported functions of them such as weight loss and metabolic syndrome. Thus, it is necessary to be verified whether supplementation of fermented enzyme foods can act in the body as a functional material. Therefore, we investigated the anti-obesity effects of fermented mixed grain with digestive enzymes (FMG) in high-fat diet induced mice. Sixty C57BL/6J mice were divided into six dietary groups and fed a normal diet (ND), a high-fat diet (HFD), Bacilus Coagulans group, steamed grain group, low-dose fermented mixed grain group(L-FMG), high-dose fermented mixed grain group (H-FMG) supplement for 12 weeks. After sacrificing, body weight and body fat mass in H-FMG group were significantly decreased compared to HFD group with a simultaneous decrease in plasma lipids. Also, H-FMG significantly decreased the blood glucose and improved the glucose tolerance compared to HFD group. Moreover high-dose FMG supplementation dramatically decreased the levels of inflammatory cytokines which secreted from adipocyte. Taken together, our findings suggest that H-FMG ameliorate high fat-diet induced obesity and its complication and could be used as a potential preventive agent for obesity.
No associated publication
Sex, Specimen part
View SamplesAnalysis of effect of luteolin on lipid metabolism at gene expression level. The hypothesis tested in the present study was that luteolin treatment with obesogenic diet suppressed the hepatic lipogenesis pathways. Conversely, in adipose tissue, luteolin stimulated the lipogenesis pathway and it also simultaneously increased the expression of genes controlling lipolysis and TCA cycle. Results provide important information about the effect on diet-induced obesity and its metabolic complications.
Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.
Sex, Age, Specimen part
View SamplesSulfisoxazole, a FDA-approved drug, is a promising repositioned drug candidate for the treatement of various cancers. Therefore we analyzed the gene expression by microarray to identified the up-regulated and down-regulated genes after SFX treatment in both, melanoma and breast cancer cells.
No associated publication
Specimen part, Disease, Cell line
View SamplesWe hypothesized that altered extracellular osmolality per se could affect the transcriptome of the kidney inner medullary collecting duct (IMCD) cells, and hence it might change renal tubular function. The data sets of transcriptomics were incorporated into the "omic" data sets of metabolomics. Primary cultured IMCD cells of rat kidney were grown in hyperosmolar culture medium (640 mOsm/KgH2O) for 4 d, and then the cells were cultured in the medium with either reduced (300 mOsm/KgH2O) or the same osmolality for 1 or 2 d more.
Patterns of gene and metabolite define the effects of extracellular osmolality on kidney collecting duct.
Sex, Age, Specimen part, Treatment
View SamplesWe identified differentially expressed genes in epididymal white adipose tissue of high fat diet(HFD)-fed mice compared to low fat diet-fed mice using microarray analysis. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity, and skeletal system development were downregulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodeling, and inflammation were upregulated. The top 10 up- or downregulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1, and Gpnmb, whose roles in obesity-associated adipose tissue deterioration are poorly understood.
No associated publication
Age, Specimen part, Treatment
View SamplesTo identify differentially up or downregulated genes in MCF7_ADR cell compare to MCF7, we have employed whole genome microarray expression profiling.
No associated publication
Specimen part, Cell line
View Samples