refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 161 results
Sort by

Filters

Technology

Platform

accession-icon GSE10377
Strains for eQTL CNV Analysis
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background

Publication Title

Expression quantitative trait loci mapping identifies new genetic models of glutathione S-transferase variation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6476
Effect of chronic fluoxetine treatment on hippocampal gene expression
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Both the mechanism of action and the factors determining the behavioral response to antidepressants are unknown. It has been shown that antidepressant treatment promotes the proliferation and survival of hippocampal neurons via enhanced serotonergic signaling, but it is still unclear whether hippocampal neurogenesis is responsible for the behavioral response to antidepressants. Furthermore, a large subpopulation of patients fails to respond to antidepressant treatment due to presumed underlying genetic factors. In the present study, we have used the phenotypic and genotypic variability of inbred mouse strains to show that there is a genetic component to both the behavioral and neurogenic effects of chronic fluoxetine treatment, and that this antidepressant induces an increase in hippocampal cell proliferation only in the strains that also show a positive behavioral response to treatment. The behavioral and neurogenic responses are associated with an upregulation of genes known to promote neuronal proliferation and survival. These results suggest that inherent genetic predisposition to increased serotonin-induced neurogenesis is a determinant of antidepressant efficacy.

Publication Title

Genetic regulation of behavioral and neuronal responses to fluoxetine.

Sample Metadata Fields

Sex, Treatment

View Samples
accession-icon GSE76158
Global gene expression in response to genetic and growth factor manipulation of TWIST1 expression and function
  • organism-icon Homo sapiens
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

In addition to their stem/progenitor properties, mesenchymal stem cells (MSCs) also exhibit various effector functions potent effector (angiogenic, anti-inflammatory, immune-modulatory) functions that are largely paracrine in nature. It is widely believed that effector functions underlie most of the therapeutic potential of MSCs and are independent of their stem/progenitor properties. Here we demonstrate that stem/progenitor and effector functions are coordinately regulated at the cellular level by the transcription factor Twist1 and specified within populations according to a hierarchical model. We further show that manipulation of Twist1 levels by genetic approaches or by exposure to widely used culture supplements including fibroblast growth factor 2 (Ffg2) and interferon gamma (IFN-gamma) alters MSC efficacy in cell-based and in vivo assays in a predictable manner. Thus, by mechanistically linking stem/progenitor and effector functions our studies provide a unifying framework in the form of an MSC hierarchy that models the functional complexity of populations. Using this framework, we developed a Clinical Indications Prediction (CLIP) scale that predicts how donor-to-donor heterogeneity and culture conditions impact the therapeutic efficacy of MSC populations for different disease indications.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21901
Striatal microRNA controls cocaine intake through CREB signalling
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNAs (miRNAs) regulate many basic aspects of cell biology including neuronal plasticity, but little is known of their roles in drug addiction. Extended access to cocaine can trigger the emergence of compulsive drug-seeking behaviors, but molecular mechanisms regulating this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with extended access to cocaine. Striatal overexpression of miR-212 decreases, whereas its inhibition increases cocaine intake in rats with extended but not restricted drug access, suggesting that miR-212 serves as a protective factor against the development of compulsive drug seeking. The transcription factor CREB (cAMP response element-binding protein) is considered a core regulator of cocaine reward. We show that miR-212 controls responsiveness to cocaine by dramatically amplifying striatal CREB signaling. This action occurs through miR-212-enhanced Raf-1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (Transducer of Regulated CREB; also known as CRTC). Our findings suggest that striatal miR-212 signaling plays a key role in vulnerability to addiction, and that noncoding RNAs such as the miRNAs may serve as novel targets for the development of anti-addiction therapeutics.

Publication Title

Striatal microRNA controls cocaine intake through CREB signalling.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE21681
Expression data from aged, calorically restricted rat hippocampal regions CA1, CA3, and DG
  • organism-icon Rattus norvegicus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Aging is associated with a decline in hippocampal mediated learning and memory, a process wich can be ameliorated by dietary (caloric) restriction. We used Affymetrix gene expression analysis to monitor changes in three regions of the hippocampus (CA1, CA3, DG) of middle aged (18 months) and old (28 month) rats that were exposed to dietary restriction. Old rats were determined to be good performers (GP) or poor performers (PP) in behavioral tests to assess thier hippocampal function.

Publication Title

Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE87905
Patterns of Arabidopsis gene expression in the face of hypobaric stress
  • organism-icon Arabidopsis thaliana
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE87904
Patterns of Arabidopsis gene expression in the face of hypobaric stress [Experiment 2]
  • organism-icon Arabidopsis thaliana
  • sample-icon 70 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Extreme hypobaria is a novel abiotic stress that is outside the evolutionary experience of terrestrial plants. In natural environments, the practical limit of atmospheric pressure experienced by higher plants is about 50 kPa or ~.5 atmospheres; a limit that is primarily imposed by the combined stresses inherent to high altitude conditions of terrestrial mountains. However, in highly controlled chambers and within extra-terrestrial greenhouses the atmospheric pressure component can be isolated from other high altitude stresses such as temperature, desiccation, and even hypoxia. In addition, hypobaria can be carried to extremes beyond what is possible in terrestrial biomes, and explored as a single variable in the examination of plant responses to novel stress. Previous studies have shown that plants adjust to hypobaric stress by differentially expressing suites of genes in unique combinations that are not equal to the dissected components of hypobaric stress (such as hypoxia and desiccation). Here we examine the organ-specific progression of transcriptional strategies for physiological adaptation to hypobaric stress over time. An abrupt transition from a near-sea level pressure of 97 kPa to only 5 kPa is accompanied by the differential expression of hundreds of genes. However, the transcriptomic reaction to hypobaric conditions lying between these two extremes reveals complex, organ-specific responses that vary over a time course of hypobaric exposure, and that are also not linear with respect to a simple gradient of severity. It is also clear that plants adjust over time such that the gene expression patterns that are initially elicited to cope with hypobaria are mediated as plants adjust their metabolism to this environment. The patterns of genome-wide changes in gene expression across a gradient of atmospheric pressures, and over a time course of several days allows for the development of theories of how plant metabolisms may be adapting to changes in atmospheric pressures.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE70418
A Detailed Characterization of the Dysfunctional Immunity and Abnormal Myelopoiesis Induced by Severe Shock and Trauma in the Aged
  • organism-icon Mus musculus
  • sample-icon 69 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The polytrauma (PT) murine model has unique transcriptomic responses 2 hrs, 1 day and 3 days after injury. We determined with this clinically relevant model that the increased morbidity in the elderly is secondary to a failure of bone marrow progenitors, blood neutrophils, and bronchoalveolar lavage cells to initiate and complete an 'emergency myelopoietic' response, engendering myeloid cells that fail to clear secondary infection. In addition, the elderly appear unable to effectively resolve their inflammatory response to severe injury.

Publication Title

A Detailed Characterization of the Dysfunctional Immunity and Abnormal Myelopoiesis Induced by Severe Shock and Trauma in the Aged.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE33373
Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit
  • organism-icon Citrus sinensis
  • sample-icon 65 Downloadable Samples
  • Technology Badge Icon Affymetrix Citrus Genome Array (citrus)

Description

In this data set, we reported for the first time that huanglongbing disease (HLB) induces major changes in the expression of global genes in flavedo, vascular and juice vesicle tissues of citrus fruit.

Publication Title

Gene expression in Citrus sinensis fruit tissues harvested from huanglongbing-infected trees: comparison with girdled fruit.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE59702
A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

MYB activation is proposed to underlie development of adenoid cystic cancer (ACC), an aggressive salivary gland tumor with no effective systemic treatments. To discover druggable targets for ACC, we performed global mRNA/miRNA analyses of 12 ACC with matched normal tissues, and compared these data with 14 mucoepidermoid carcinomas (MEC) and 11 salivary adenocarcinomas (ADC). We detected a unique ACC gene signature of 1160 mRNAs and 22 miRNAs. MYB was the top-scoring gene (18-fold induction), however we observed the same signature in ACC without detectable MYB gene rearrangements. We also found 4 ACC tumors (1 among our 12 cases and 3 from public databases) with negligible MYB expression that retained the same ACC mRNA signature including over-expression of extracellular matrix (ECM) genes. Integration of this signature with somatic mutational analyses suggests that NOTCH1 and RUNX1 participate with MYB to activate ECM elements including the VCAN/HAPLN1 complex. We observed that forced MYB-NFIB expression in human salivary gland cells alters cell morphology and cell adhesion in vitro and depletion of VCAN blocked tumor cell growth of a short-term ACC tumor culture. In summary, we identified a unique ACC signature with parallel MYB-dependent and independent biomarkers and identified VCAN/HAPLN1 complexes as a potential target.

Publication Title

A unifying gene signature for adenoid cystic cancer identifies parallel MYB-dependent and MYB-independent therapeutic targets.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact