refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 11475 results
Sort by

Filters

Technology

Platform

accession-icon GSE1947
Disease mechanisms in peripheral neuropathies due to altered Pmp22 gene dosage or a Pmp22 point mutation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We compared gene expression at ages P4 and P60 in sciatic nerve of wild type mice and mice with peripheral neuropathies caused by altered Pmp22 gene dosage (homozygous knockout or transgene) or a point mutation (Trembler).

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE972
NCSC-SC development
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Time course of early development of peripheral nerve, from embryonic day 9.5 to postnatal day 0.

Publication Title

Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41614
Transcriptional profiling of tumor-associated blood vessels in invasive bladder cancer
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Tumor-associated blood vessels differ from normal vessels at the morphological and molecular level. Proteins that are only present on tumor vessels may serve as biomarkers and as therapeutic targets for inhibition of angiogenesis in cancer. Comparing the transcriptional profiles of blood vascular endothelium from human invasive bladder cancer and from normal bladder tissue, we found several markers that could serve as novel biomarkers or therapeutic targets.

Publication Title

Endocan is upregulated on tumor vessels in invasive bladder cancer where it mediates VEGF-A-induced angiogenesis.

Sample Metadata Fields

Sex, Disease stage

View Samples
accession-icon GSE25765
Microarray gene expression profiling of cardiac genes at the onset of heart failure
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Atherosclerosis and pressure overload are major risk factors for the development of heart failure in patients. Cardiac hypertrophy often precedes the development of heart failure. However, underlying mechanisms are incompletely understood. To investigate pathomechanisms underlying the transition from cardiac hypertrophy to heart failure we used experimental models of atherosclerosis- and pressure overload-induced cardiac hypertrophy and failure, i.e. apolipoprotein E (apoE)-deficient mice, which develop heart failure at an age of 18 months, and non-transgenic C57BL/6J (B6) mice with heart failure triggered by 6 months of pressure overload induced by abdominal aortic constriction (AAC). The development of heart failure was monitored by echocardiography, invasive hemodynamics and histology. The microarray gene expression study of cardiac genes was performed with heart tissue from failing hearts relative to hypertrophic and healthy heart tissue, respectively. The microarray study revealed that the onset of heart failure was accompanied by a strong up-regulation of cardiac lipid metabolism genes involved in fat synthesis, storage and oxidation.

Publication Title

Up-regulation of the cardiac lipid metabolism at the onset of heart failure.

Sample Metadata Fields

Age, Specimen part, Disease

View Samples
accession-icon GSE42771
Microarray gene expression profiling of kinase-dependent and kinase-independent effects of GRK2
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ubiquitously expressed G-protein-coupled receptor kinase 2 (GRK2, ADRBK1) is an indispensable kinase involved in growth, differentiation and development. Exaggerated GRK2 activity plays a major pathophysiological role in the development of cardiovascular diseases such as heart failure and hypertension. GRK2 exerts its functions by kinase-dependent and kinase-independent effects. To assess the differential impact of GRK2 on cellular signalling we established HEK cell clones with over-expression of comparable protein levels of GRK2 or the kinase-deficient GRK2-K220R mutant, respectively. HEK cells were either cultured in vitro or expanded in vivo, in immunodeficient NOD.Scid mice to discriminate between in vitro and in vivo effects of GRK2. Whole genome microarray gene expression profiling was performed of cultured HEK cells and of NOD.Scid mouse-expanded HEK clones. As an additional control, cells were re-cultured in vitro after expansion in NOD.Scid mice.

Publication Title

Inhibition of G-protein-coupled receptor kinase 2 (GRK2) triggers the growth-promoting mitogen-activated protein kinase (MAPK) pathway.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25767
Cardiac gene expression profiling of apoE-deficient mice receiving heart failure treatment with the anti-ischemic drug ranolazine
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Heart failure is a leading cause of cardiovascular mortality with limited options for treatment. We used 18 month-old apolipoprotein E (apoE)- deficient mice as a model of atherosclerosis-induced heart failure to analyze whether the anti-ischemic drug ranolazine could retard the progression of heart failure. The study showed that 2 months of ranolazine treatment improved cardiac function of 18 month-old apoE-deficient mice with symptoms of heart failure as assessed by echocardiography. To identify changes in cardiac gene expression induced by treatment with ranolazine a microarray study was performed with heart tissue from failing hearts relative to ranolazine-treated and healthy control hearts. The microarray approach identified heart failure-specific genes that were normalized during treatment with the anti-ischemic drug ranolazine.

Publication Title

Up-regulation of the cardiac lipid metabolism at the onset of heart failure.

Sample Metadata Fields

Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE19286
Microarray gene expression profiling of aorta genes of APOE-deficient mice receiving the ACE inhibitor captopril
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Microarray gene expression profiling of aorta genes of APOE-deficient mice receiving atherosclerosis treatment with the ACE inhibitor captopril.

Publication Title

Angiotensin-converting enzyme inhibition down-regulates the pro-atherogenic chemokine receptor 9 (CCR9)-chemokine ligand 25 (CCL25) axis.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE25766
Cardiac gene expression profiling of heart failure treatment with the anti-ischemic drug ranolazine
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Heart failure is a leading cause of cardiovascular mortality with limited options for treatment. We analyzed whether the anti-ischemic drug ranolazine could retard the progression of heart failure in an experimental model of heart failure induced by 6 months of chronic pressure overload. The study showed that 2 months of ranolazine treatment improved cardiac function of aortic constricted C57BL/6J (B6) mice with symptoms of heart failure as assessed by echocardiography. The microarray gene expression study of heart tissue from failing hearts relative to ranolazine-treated and healthy control hearts identified heart failure-specific genes that were normalized during treatment with the anti-ischemic drug ranolazine.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE25768
Model of heart failure induced by mild thiol-blocking with cystamine
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Depletion of cardiac ATP content is a characteristic feature of heart failure in patients and experimental animal models. To analyze the impact of insufficient ATP supply on heart function we inhibited cellular respiration by disulfide poisoning with the mild thiol-blocking agent, cystamine. We chose 4 month-old apolipoprotein E (apoE)-deficient mice, which are highly vulnerable to increased oxygen and ATP demands. After 4 weeks of cystamine treatment (300 mg/kg in drinking water), echocardiography and histology analyses demonstrated that apoE-deficient mice had developed heart failure with cardiac dilation. The microarray gene expression study of heart tissue from cystamine-treated apoE-deficient mice relative to untreated mice confirmed the development of heart failure showing up-regulation heart failure-specific genes by mild thiol-blocking with cystamine.

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part, Disease, Treatment

View Samples
accession-icon GSE28031
Microarray gene expression profiling of heart failure induced in apolipoprotein E-deficient mice by treatment with rosiglitazone
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The anti-diabetic drug and agonist of the peroxisome proliferator-activated receptor gamma (Pparg), rosiglitazone, was recently withdrawn in many countries because the drug use was associated with an increased risk of heart failure. To investigate underlying pathomechanisms, we chose 6-month-old apolipoprotein E (apoE)-deficient mice, which are prone to atherosclerosis and insulin resistance, and thereby mimic the risk profile of patients with cardiovascular disease. After 8 weeks of rosiglitazone treatment (30 mg/kg/day), echocardiography and histology analyses demonstrated that rosiglitazone had induced heart failure with cardiac dilation. Concomitantly, cardiac lipid overload and lipid-induced cardiomyocyte death developed. The microarray gene expression study of heart tissue from rosiglitazone-treated apoE-deficient mice relative to untreated apoE-deficient mice and non-transgenic B6 mice identified cardiac Pparg-dependent lipid metabolism genes in rosiglitazone-treated mice, which seem to trigger a major heart failure promoting pathway.

Publication Title

Inhibition of G-protein-coupled Receptor Kinase 2 Prevents the Dysfunctional Cardiac Substrate Metabolism in Fatty Acid Synthase Transgenic Mice.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact