refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1095 results
Sort by

Filters

Technology

Platform

accession-icon GSE17593
Melanoma short-term cultures and cell lines: expression profiling and CNV analyses
  • organism-icon Homo sapiens
  • sample-icon 27 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative analysis of the melanoma transcriptome.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE17349
Expression data for melanoma short-term cultures and cell lines
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

We profiled the gene expression levels from 8 melanoma short-term cultures and 1 melanoma cell line in order to compare to expression level estimates obtained by RNA-seq.

Publication Title

Integrative analysis of the melanoma transcriptome.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE18281
Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Interaction of hematopoietic progenitors with the thymic stromal microenvironment induces them to proliferate, adopt the T cell fate, and asymmetrically diverge into multiple T lineages. Progenitors at various developmental stages are stratified among different regions of the thymus, implying that the corresponding microenvironments differ from one another, and provide unique sets of signals to progenitors migrating between them. The nature of these differences remains undefined. Here we use novel physical and computational approaches to characterize these stromal subregions, distinguishing gene expression in microdissected tissues from that of their lymphoid constituents. Using this approach, we comprehensively map gene expression in functionally distinct stromal microenvironments, and identify clusters of genes that define each region. Quite unexpectedly, we find that the central cortex lacks distinctive features of its own, and instead appears to function by sequestering unique microenvironments found at the cortical extremities, and modulating the relative proximity of progenitors moving between them.

Publication Title

Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30631
Non-overlapping functions for Notch1 and Notch3 during murine steady state thymic lymphopoiesis.
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Notch1 signaling is absolutely essential for steady-state thymic lymphopoiesis, but the role of other Notch receptors, and their potential overlap with the function of Notch1, remains unclear. Here we show that like Notch1, Notch3 is differentially expressed by progenitor thymocytes, peaking at the DN3 progenitor stage. Using mice carrying a gene-trapped allele, we show that thymic cellularity is slightly reduced in the absence of Notch3, although progression through the defined sequence of TCR- development is normal, as are NKT and TCR cell production.

Publication Title

Nonoverlapping functions for Notch1 and Notch3 during murine steady-state thymic lymphopoiesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE55942
Rescue of KRAS suppression in HCT116 colon cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Cancer cells that express oncogenic alleles of RAS typically require sustained expression of the mutant allele for survival, but the molecular basis of this oncogene dependency remains incompletely understood. To identify genes that can functionally substitute for oncogenic RAS, we systematically expressed 15,294 open reading frames in a human KRAS-dependent colon cancer cell line engineered to express an inducible KRAS-specific shRNA. We found 147 genes that promoted survival in the setting of KRAS suppression. In this model, the transcriptional co-activator YAP1 rescued cell viability in KRAS-dependent cells upon suppression of KRAS and was required for KRAS-induced cell transformation. Acquired resistance to Kras suppression in a Kras-driven murine lung cancer model also involved increased YAP1 signaling. KRAS and YAP1 converge on the transcription factor FOS and activate a transcriptional program involved in regulating the epithelial-mesenchymal transition (EMT). Together, these findings implicate transcriptional regulation of EMT by YAP1 as a significant component of oncogenic RAS signaling.

Publication Title

KRAS and YAP1 converge to regulate EMT and tumor survival.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE57542
Expression data measured by Nanostring and microarray of monocyte-derived dendritic cells from healthy individuals stimulated with LPS, influenza, or IFN-beta, or left unstimulated
  • organism-icon Homo sapiens
  • sample-icon 228 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Common genetic variants modulate pathogen-sensing responses in human dendritic cells.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE36139
SNP and Expression data from the Cancer Cell Line Encyclopedia (CCLE)
  • organism-icon Homo sapiens
  • sample-icon 882 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36133
Expression data from the Cancer Cell Line Encyclopedia (CCLE)
  • organism-icon Homo sapiens
  • sample-icon 882 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The Cancer Cell Line Encyclopedia (CCLE) project is a collaboration between the Broad Institute, the Novartis Institutes for Biomedical Research and the Genomics Novartis Foundation to conduct a detailed genetic and pharmacologic characterization of a large panel of human cancer models

Publication Title

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17312
BI Human Reference Epigenome Mapping Project
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.

Publication Title

The NIH Roadmap Epigenomics Mapping Consortium.

Sample Metadata Fields

Sex, Specimen part, Disease, Subject

View Samples
accession-icon GSE5258
Connectivity Map dataset (build01)
  • organism-icon Homo sapiens
  • sample-icon 346 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A reference collection of genome-wide transcriptional expression data for bioactive small molecules.

Publication Title

The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact