Our previous studies have clearly demonstrated the roles of hPCL3s (PHF19) in the migration, invasion and metastasis of HCC cells. The microarray analysis was performed to screen the differentially expressed genes in the PVTT/hPCL3s
No associated publication
Specimen part
View SamplesAlteration in gene expression accompanying initial stages of allopolyploidy is a prominent feature in plants, but its spectrum and model are highly idiosyncratic. We used multi-colour GISH to identify individuals from two nascent allohexaploid wheat lines between Triticum turgidum and Aegilops tauschii, which had a transgenerationally stable chromosomal constitution mimicking that of common wheat. We performed genomewide analysis of gene expression for these plants along with their parental species using the Affymetrix GeneChip Wheat Genome-Array. Comparison with parental species coupled with inclusion of empirical mid-parent values (MPVs) revealed two patterns of alteration in gene expression in the allohexaploid lines: parental dominance expression and nonadditive expression. Genes involved in each altered pattern could be classified into three distinct groups, stochastic, heritable and persistent, based on their transgenerational heritability and inter-line conservation. Whereas both altered patterns of gene expression showed a propensity of inheritance, identity of the involved genes is stochastic, consistent with the involvement of diverse Gene Ontology (GO) terms. Nonetheless, those genes showing nonadditive expression exhibited a significant enrichment for vesicle-function. Our results suggest global alteration in gene expression conditioned by nascent allopolyploidy likely play functional roles in stabilization and establishment of the newly formed plants, and consequential to evolution.
No associated publication
Specimen part
View SamplesWe have found that overexpression of OsNPR1, a master gene for SAR in rice, greatly enhanced disease resistance. However, the growth and development of the OsNPR1 overexpression (OsNPR1-OX) lines were restrained and the mechanism remained elusive.
The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression.
Specimen part
View SamplesRice is highly sensitive to drought, and the effect of drought may vary with the different genotypes and development stages. Genome-wide gene expression profiling was used as the initial point to dissect molecular genetic mechanism of this complex trait and provide valuable information for the improvement of drought tolerance in rice. Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the gene expression pattern of rice exposed to drought stress. The transcriptome from leaf, root, and young panicle at three developmental stages was comparatively analyzed combined with bioinformatics exploring drought stress related cis-elements.
Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
Specimen part
View SamplesHaploid pluripotent stem cells, such as haploid embryonic stem cells (haESCs), facilitate the genetic study of recessive traits. In vitro, fish haESCs maintain haploidy in both undifferentiated and differentiated states, but whether mammalian haESCs can preserve pluripotency in the haploid state has not been tested. Here, we report that mouse haESCs can differentiate in vitro into haploid epiblast stem cells (haEpiSCs), which maintain an intact haploid genome, unlimited self-renewal potential, and durable pluripotency to differentiate into various tissues in vitro and in vivo. Mechanistically, the maintenance of self-renewal potential depends on the Activin/bFGF pathway. We further show that haEpiSCs can differentiate in vitro into haploid progenitor-like cells.
Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cells in vitro.
Specimen part
View SamplesIn plants, CCCH zinc finger proteins involved in secondary wall formation and anther development are poorly understood. We have functionally identified two homologous genes C3H14 and C3H15 and found that the two genes differentially regulate secondary wall formation and anther development. C3H14 contributes more to secondary wall thickening, whereas, C3H15 is more important for anther development.
Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development.
Specimen part
View SamplesThe C-REPEAT-BINDING FACTOR (CBF) pathway has important roles in plant responses to cold stress. Previous research documented that constitutively expressed upstream transcription factors are activated by cold stress to induce the expression of CBF genes and the resulting CBF proteins trigger the expression of downstream cold responsive genes that confer freezing tolerance. In the present study, we found that dysfunction of RNA-DIRECTED DNA METHYLATION 4 (RDM4), which encodes a protein that associates with RNA polymerases Pol IV and Pol V as well as Pol II, and is required for RNA-directed DNA methylation (RdDM) and proper plant development in Arabidopsis, reduced chilling and freezing tolerance in Arabidopsis as evidenced by decreased survival and increased electrolyte leakage under cold stress conditions. CBFs and CBF regulon genes were down-regulated in rdm4 but not nrpe1 (the largest subunit of PolV) mutant plants, suggesting that the role of RDM4 in cold stress responses is independent of the RdDM pathway. Overexpression of RDM4 increased the expression of CBFs and CBF regulon genes and decreased cold-induced membrane injury. The rdm4 mutants exhibited decreased antioxidant enzyme activities and increased accumulation of reactive oxygen species. Microarray analysis indicated that a great proportion of genes affected by rdm4 overlapped with those affected by CBF2 and CBF3 in Arabidopsis. Chromatin immunoprecipitation (ChIP) results suggested that RDM4 is important for Pol II occupancy at the promoters of CBF genes but not the promoters of up-stream regulators of CBFs. Together, these data indicate that RDM4 acts as a component of a Pol II transcription complex that regulates CBF gene expression and cold stress resistance in Arabidopsis.
RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
Specimen part
View SamplesSolar ultraviolet CUV-Cradiation reaching the Earths surface is little due to the filtering effects of the stratospheric ozone layer. At present, artificial UV-C irradiation is utilized for different biological processes. Grape is a major fruit crop around the world. Research has shown that UV-C irradiation induced the biosynthesis of phenols. However, changes at the molecular level in response to UV-C and leading to these effects are poorly understood. To elucidate the effect of UV-C on expression of genes in grape and the response mechanism, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts)
Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation.
Age, Treatment
View SamplesTo understand the roles of molecules in functional differentiation among adult human tissues, we performed a systematic survey of mRNA, protein, and protein phosphorylation as well as miRNA expression, in three tissues: cerebellum, prefrontal cortex and liver. We found that tissues were clearly distinct from one another at all levels. Furthermore, our results showed that miRNA differently expressed between tissues have significant, but modest effect on expression of mRNA and somewhat stronger effect on expression of proteins among the tissues.
No associated publication
Sex, Age, Specimen part
View Samples