High levels of Hes1 expression are frequently found in BCR-ABL-positive chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BClike disease; however the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-kB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of Hes1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, these CMPs secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BClike disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.
Hes1 promotes blast crisis in chronic myelogenous leukemia through MMP-9 upregulation in leukemic cells.
Specimen part
View SamplesNeural stem cells (NSCs) are considered to be the cell-of-origin of brain tumor stem cells. To identify the genetic pathways responsible for the transformation of normal NSCs to brain-tumor-initiating cells, we used Sleeping Beauty (SB) transposons, to mutagenize NSCs. Mobilized SB transposons induced the immortalization of NSCs. Immortalized NSCs induced tumors upon subcutaneous transplantation in immunocompromized mice. To further classify the immortalized cells and mouse tumors, we performed Gene Set Enrichment Analysis (GSEA) using DNA microarray data.
Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells.
Specimen part
View SamplesGeneChip Mouse Gene 2.0 ST Array was used to comprehensively investigate the changes of gene expression of small intestinal myofibroblasts of mice after stimulation with homogenates of intestinal eosinophils in vitro.
Eosinophil depletion suppresses radiation-induced small intestinal fibrosis.
No sample metadata fields
View SamplesNIH3T3 in the middle of G0 to G1 transion consists of the cells which is still staying G0 phase and the cells which enters G1. Monitoring the expressions of p27 and Cdt1 enables to distinguish these two; p27+/Cdt1+ cells as the cells in G0 phase and p27-Cdt1+ cells as G1 phase
A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms.
Specimen part, Disease, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes.
Specimen part, Cell line
View SamplesThe aim of this study is to identify responders to FOLFOX therapy by applying the Random Forests (RF) algorithm to gene expression data. Eighty-three unresectable colorectal cancer (CRC) patients including 42 responders and 41 non-responders were divided into training (54 patients) and test (29 patients) sets.
Potential responders to FOLFOX therapy for colorectal cancer by Random Forests analysis.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.
Specimen part, Cell line
View SamplesSmall cell lung cancer (SCLC) is a subtype of lung cancer with poor prognosis due to early dissemination and rapid growth. We here analyze gene expression profile of 23 clinical SCLC samples. EZH2 was found to be highly expressed in SCLC samples compared to 42 normal tissues including the normal lung, and other PRC2 members, SUZ12 and EED, were also highly expressed in SCLC. To obtain target genes of PRC2 in SCLC, H3K27me3 mark was mapped in three SCLC cell lines, Lu130, H209 and DMS53, and compared to normal small airway epithelial cells (SAEC). Whereas H3K27me3(+) genes in SAEC were significantly overlapped with PRC-target genes in ES cells (P=1.7x10-31), genes with H3K27me3 in SCLC cell lines but not in SAEC were not significantly overlapped with PRC-target genes in ES cells (P=0.64). These genes with H3K27me3 specifically in SCLC cell lines but not in SAEC showed decreased expression, not only in SCLC cell lines but also in clinical SCLCs, and showed enrichment of GO-terms such as plasma membrane (P=8.1x10-21) and cell adhesion (P=1.7x10-8). Introduction of JUB, a gene showing specific H3K27me3 modification and the strongest repression in the three SCLC cell lines, resulted in repression of cellular growth in DMS53. In clinical SCLC cases, lower JUB level correlated to shorter survival (P=0.002), or a set of PRC target genes (JUB, EPHB4) and marker genes of classic type SCLC (GRP, ASCL1) correlated to shorter survival (P=0.0001) and classified SCLC into two groups with distinct prognosis. Growth of SCLC cell lines was repressed when treated with 3-Deazaneplanocin A, an inhibitor against PRC2. It is suggested that high expression of PRC2 in SCLC contributed to repression of genes including non-PRC-target genes in ES cells, and that the gene repression may play a role in genesis of SCLC.
PRC2 overexpression and PRC2-target gene repression relating to poorer prognosis in small cell lung cancer.
Specimen part, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNA methylation profiling of embryonic stem cell differentiation into the three germ layers.
Sex, Specimen part
View Samples