refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2988 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-893
Transcription profiling by array of hepatocytes from mice fed a high fat diet
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430B Array (moe430b), Affymetrix Mouse Expression 430A Array (moe430a)

Description

Effect of high fat diet feeding on gene expression

Publication Title

Subtle metabolic and liver gene transcriptional changes underlie diet-induced fatty liver susceptibility in insulin-resistant mice.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon E-MEXP-889
Transcription profiling of three strains of rat that are normoglycaemic or hyperglycaemic
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Effects of hyperglycaemia and genetic background differences on gene expression in rats

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon E-MTAB-494
Transcription profiling by array of zebra fish embryos at the 5-somite stage treated with aplexone
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Arterial and venous endothelial cells exhibit distinct molecular characteristics at early developmental stages. These lineage-specific molecular programs are instructive to the development of distinct vascular architectures and physiological conditions of arteries and veins, but their roles in angiogenesis remain unexplored. Here, we show that the caudal vein plexus in zebrafish forms by endothelial cell sprouting, migration and anastomosis, providing a venous-specific angiogenesis model. Using this model, we identified a novel compound, aplexone, which effectively suppresses venous, but not arterial, angiogenesis. Multiple lines of evidence indicate that aplexone differentially regulates arteriovenous angiogenesis by targeting the HMG-CoA reductase (HMGCR) pathway. Treatment with aplexone affects the transcription of enzymes in the HMGCR pathway and reduces cellular cholesterol levels. Injecting mevalonate, a metabolic product of HMGCR, reverses the inhibitory effect of aplexone on venous angiogenesis. In addition, aplexone treatment inhibits protein prenylation and blocking the activity of geranylgeranyl transferase induces a venous angiogenesis phenotype resembling that observed in aplexone-treated embryos. Furthermore, endothelial cells of venous origin have higher levels of proteins requiring geranylgeranylation than arterial endothelial cells and inhibiting the activity of Rac or Rho Kinase effectively reduces the migration of venous, but not arterial, endothelial cells. Taken together, our findings indicate that angiogenesis is differentially regulated by the HMGCR pathway via an arteriovenousdependent requirement for protein prenylation in zebrafish and human endothelial cells.

Publication Title

Aplexone Targets the HMG-CoA Reductase Pathway and Differentially Regulates Arteriovenous Angiogenesis

Sample Metadata Fields

Compound

View Samples
accession-icon GSE17060
Expression in adipose tissue and liver from a spontaneous rat model of Type 2 diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE85080
Expression of Idh1R132H in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced -ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased.Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells over-expressed Wnt, cell cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis. Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1R132H in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced -ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells over-expressed Wnt, cell cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1R132H mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis.

Publication Title

Expression of Idh1<sup>R132H</sup> in the Murine Subventricular Zone Stem Cell Niche Recapitulates Features of Early Gliomagenesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE17059
Gene expression in adipose tissue and liver from a spontaneous rat model of Type 2 diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Type 2 diabetes (T2D) is characterized by hyperglycaemia and defects in insulin secretion and action at target tissues. Using the Illumina RatRef-12 v1.0 array, gene expression was assessed in two insulin-target tissues (liver and adipose tissue) from seven-month-old spontaneously diabetic (Goto-Kakizaki [GK]) and non-diabetic (Brown-Norway [BN]) rats. This study was performed in parallel with miRNA expression profiling of the same rats.

Publication Title

MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of Type 2 Diabetes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE23711
Expression profiling of nhp6 mutants and wildtype yeast cells (Saccharomyces cerevisiae)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. However, nucleosome number in cells was considered fixed, and no condition was described where nucleosome number was reduced. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker and variant histones, and a correspondingly reduced number of nucleosomes. Yeast nhp6 mutants lacking NHP6A and B proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform, and our results can be modelled assuming that different nucleosomal sites compete for the available histones: sites with high affinity are almost always packaged into nucleosomes both in wt and nucleosome-depleted cells, whereas sites with low affinity are less frequently packaged in nucleosome-depleted cells. We suggest that by modulating the occupancy of nucleosomes histone availability may constitute a novel layer of epigenetic regulation.

Publication Title

Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32715
Global gene expression analysis in murine iPS cells derived with Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32464
Global gene expression analysis in murine iPS cells derived with mouse and human Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with mouse (m) Nanog and human (h) Nanog. Global gene expression in resulting iPS cells was compared to embryonic stem (ES) cells and nanog null NS cells.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE32650
Global gene expression analysis in murine iPS cells derived with mouse, chick and zebrafish Nanog orthologs
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Nanog null neural stem (NS) cells were reprogrammed to naive pluripotency in 2i/LIF conditions with chick (c) and zebrafish (z) Nanog orthologs. Global gene expression was compared to iPS cells derived with mouse (m) Nanog.

Publication Title

Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact