To understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2-/- cumuli before and after ovulation by using microarrays.
Expression profiling of cumulus cells reveals functional changes during ovulation and central roles of prostaglandin EP2 receptor in cAMP signaling.
Sex, Specimen part
View SamplesRationale Electroconvulsive seizure (ECS) therapy is a nonchemical treatment for depression. Since ECS up-regulates expression of c-Fos in the paraventricular nucleus of hypothalamus (PVN), the function of which is frequently influenced in depression, we hypothesized that ECS modulates functions of the PVN and contributes to its antidepressant effects. Objectives To identify gene expression changes in the mouse PVN by ECS treatment Material and methods First, we established a method to amplify nucleotides from small quantities of RNA. Mice received one shock of ECS and their brains were collected at 2 or 6 h after shock. The PVN was microdissected from dehydrated brain sections, its total RNA was extracted and microarray analysis was applied. Results At 2 h after ECS, 2.6% (589 genes) of the probes showed more than 2-fold decrease, and 0.9% (205 genes) showed more than 2-fold increase. To confirm the expression changes, genes showing differential expression with a wide range in the microarray were analyzed by qPCR. Among the genes with more than 2-fold change by ECS, down-regulated 94 genes and up-regulated 24 genes have been reported the association with anxiety, bipolar disorder or mood disorder by the Ingenuity knowledge database. The groups of down-regulated genes, which are suggested to modulate the function of the PVN or associate to psychiatric disorders, include neuropeptides (Cck), kinases (Prkcb, Prkcc, Camk2a), transcription factors (Bcl6, Tbr1), transporters (Aqp4) and others (Fmr1). Conclusion The present results indicate that ECS treatment can modulate the functions of PVN via a series of gene expression changes, and may contribute to its antidepressant effects at least in part.
Electroconvulsive seizure-induced changes in gene expression in the mouse hypothalamic paraventricular nucleus.
Specimen part, Treatment, Time
View SamplesThe ventromedial nucleus of the hypothalamus (VMH) is thought to a satiety center and a potential target for anti-obesity therapy. Electroconvulsive seizure (ECS) therapy is highly effective in psychiatric diseases including depression, but also implicated beneficial effects on other neurological diseases. Although it has been reported that the neurons in the VMH are strongly activated by ECS stimulation, the effect of ECS in this hypothalamic subnucleus remains unknown. To address this issue, we investigated molecular changes in the VMH in response to ECS by utilizing a method of laser-capture microdissection coupled with microarray analysis, and examined behavioral effects of ECS via VMH activation. ECS significantly induced gene expression not only immediate-early genes such as Fos, Fosb and Jun, but also Bdnf, Adcyap1, and Hrh1 in the VMH after a single or repeated stimulus.
No associated publication
Specimen part, Treatment
View SamplesTranscriptome analysis of LPS-stimulated bone marrow-derived dendritic cells with NR4A3 gene silencing
The Orphan Nuclear Receptor NR4A3 Is Involved in the Function of Dendritic Cells.
Specimen part
View SamplesThe dentate gyrus (DG) of the hippocampus is one of major targets for antidepressant treatments. Using electroconvulsive stimulation (ECS), a model of highly effective and fast-acting antidepressant therapy, here we show that neural stimulation via ECS induces rapid and lasting dematuration of granule neurons in DG. A single time of stimulation transiently reduced mature marker expression and mature synaptic functions. Repetitive stimulation converted this transient dematuration into a stable form lasting more than 1 month. We compared the activity-dependent neuronal responsiveness in the DG between a single ECS and repeated ECS.
Rapid and stable changes in maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive treatment.
Specimen part, Disease, Treatment
View SamplesThe dentate gyrus (DG) of the hippocampus is one of major targets for antidepressant treatments. Our recent research has revealed that selective serotonin reuptake inhibitor (SSRI) treatment causes a long-lasting change in the phenotypes of mature dentate granule neurons to immature state in adult mouse DG. However, it is unknown whether this dematuration of DG is a common effect of antidepressant treatments and what mechanisms underlie it. Using electroconvulsive stimulation (ECS), a model of highly effective and fast-acting antidepressant therapy, here we show that neural stimulation via ECS induces rapid and lasting dematuration of granule neurons in DG. A single or few times of stimulation transiently reduced mature marker expression and mature synaptic functions. Repetitive stimulation converted this transient dematuration into a stable form lasting more than 1 month. Dematured granule neurons showed higher excitability, and an increase in GABA-mediated inhibition by the benzodiazepine diazepam prevented the lasting maintenance phase of dematuration without affecting the initial induction phase. Our study suggests that dematuration of DG is a common cellular mechanism underlying effects of different types of antidepressant treatments, and demonstrate a novel role for excitation/inhibition balance in bidirectional regulation of the state of neuronal maturation in the adult brain.
Rapid and stable changes in maturation-related phenotypes of the adult hippocampal neurons by electroconvulsive treatment.
Specimen part
View SamplesRecent studies have highlighted the role of adrenal corticosteroid signaling in cardiac physiology and pathophysiology. It is known that glucocorticoids and aldosterone are able to bind glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), and these ligand-receptor interactions are redundant. Therefore, it has been impossible to delineate how these nuclear receptors couple with corticosteroid ligands and differentially regulate gene expression for operation of their distinct functions in the heart.
Ligand-based gene expression profiling reveals novel roles of glucocorticoid receptor in cardiac metabolism.
No sample metadata fields
View SamplesTo investigate effects of intake of mulberry leaves on hyperlipidemia, we performed gene expression profiling on rat liver by microarray analysis.
Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress.
No sample metadata fields
View SamplesTo examine the transcriptome alteration caused by ZIC5 knockdown in melanoma, we performed gene expression microarray analysis.
ZIC5 Drives Melanoma Aggressiveness by PDGFD-Mediated Activation of FAK and STAT3.
Cell line
View SamplesGlobal DNA hypomethylation and DNA hypermethylation of promoter regionsincluding tumor suppressor genesare frequently detected in human cancers. Although many studies have suggested a contribution to carcinogenesis, it is still unclear whether the aberrant DNA hypomethylation observed in tumors is a consequence or a cause of cancer. We found that overexpression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA hypomethylation and transformation in NIH3T3 cells. This hypomethylation was due to the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent impairment of Dnmt1 localization. In addition, enforced expression of Stella enhanced the metastatic ability of B16 melanoma cells through the induction of metastasis-related genes by inducing DNA hypomethylation of their promoter regions. Such DNA hypomethylation itself causes cellular transformation and metastatic ability. These data provide new insight into the function of global DNA hypomethylation in carcinogenesis.
Global DNA hypomethylation coupled to cellular transformation and metastatic ability.
Cell line
View Samples