refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 98 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-1704
Transcription profiling of pancreas from Wistar or WBN/Kob rats to study chronic pancreatitis
  • organism-icon Rattus norvegicus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Wistar rats, purchased from BRL (Fullinsdorf/BL, Switzerland), and WBN/Kob rats, purchased from SLC Inc. (Shizuoka, Japan), were specific pathogen-free. Rats were housed in groups of maximally 4 instandard cages (1,820 cm2 bottom area) and kept in our animal facility for various time periods between 1 week and 36 weeks (free access to standard rat chow and water; specific pathogen-free conditions; 20 degree C; day/night cycle simulated by artificial lighting of 50 lx from 7 a.m. to 7 p.m., dimmed in the remaining hours to almost complete darkness; air humidity 50 to 60%). Prior to surgery or sacrifice, the rats were fasted overnight (16 to18 h) with free access to water. All manipulations conformed with the Swiss Federal Guidelines on Animal Experiments and were approved by the local ethics committee.

Publication Title

Inflammation-dependent expression of SPARC during development of chronic pancreatitis in WBN/Kob rats and a microarray gene expression analysis.

Sample Metadata Fields

Sex, Age, Specimen part, Time

View Samples
accession-icon GSE54852
Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE54868
JAK/STAT coordinates cell proliferation during disc regeneration with Dilp8-mediated developmental delay in Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Regeneration of fragmented Drosophila imaginal discs occurs in an epimorphic manner, involving local cell proliferation at the wound site. Following disc fragmentation, cells at the wound site activate a restoration program through wound healing, regenerative cell proliferation and repatterning of the tissue. However, the interplay of signaling cascades, driving these early reprogramming steps, is not well understood. Here we profiled the transcriptome of regenerating cells in the early phase within twenty-four hours after wounding. We found that JAK/STAT signaling becomes activated at the wound site and promotes regenerative cell proliferation in cooperation with Wingless (Wg) signaling. In addition, we demonstrated that the expression of Drosophila insulin-like peptide 8 (dilp8), which encodes a paracrine peptide to delay the onset of pupariation, is controlled by JAK/STAT signaling in early regenerating discs. Our findings suggest that JAK/STAT signaling plays a pivotal role in coordinating regenerative disc growth with organismal developmental timing.

Publication Title

During Drosophila disc regeneration, JAK/STAT coordinates cell proliferation with Dilp8-mediated developmental delay.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon E-MEXP-2472
Transcription profiling by array of Arabidopsis after growing in dark or light conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconUNKNOWN, Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

RNA from etiolated seedlings, light-treated seedlings, leaves and flowers was hybridized to ATH1 and AGRONOMICS1 arrays.

Publication Title

AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE24057
Expression data from wild-type FY4 and the TF-KOs BAS1-, PHO2-, GCN4- and GCR2-deletion strains
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22139
Bone morphogenetic protein-7 is a MYC target with pro-survival functions in childhood medulloblastoma
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Medulloblastoma (MB) is the most common malignant brain tumor in children, among whom overexpression or amplification of MYC oncogenes has been associated with poor clinical outcome. Although the MYC functions during normal development and oncogenesis in various systems have been extensively investigated, the transcriptional targets mediating MYC effects in MB are still elusive. Their identification and roles during MB onset and progression are important and will ultimately suggest novel potential therapeutic targets. cDNA microarray analysis was used to compare the effects of overexpressing and silencing MYC on the transcriptome of a MB-derived cell line. We identified 209 genes with potential relevance to MYC-dependent cellular responses in MB. Among the MYC-responsive genes, we found members of the bone morphogenetic protein (BMP) signaling pathway, which plays a crucial role during the development of the cerebellum. In particular, the cytokine gene BMP7 was identified as a direct target of MYC in MB cells. Similar to the effect induced by BMP7 silencing by siRNA, the use of a small-molecule inhibitor of the BMP/SMAD signaling pathway reduced cell viability in a panel of MB cells. Altogether, our findings indicate that high MYC levels drive BMP7 expression in MB to induce pro-survival and pro-proliferative cellular pathways. This observation suggests that targeting the BMP/SMAD pathway may be a new therapeutic concept for the treatment of childhood MB.

Publication Title

Bone morphogenetic protein-7 is a MYC target with prosurvival functions in childhood medulloblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE94638
Gene expression in germinal centre light zone and dark zone cells of high or low affinity
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression analysis performed on FACS sort purified GC LZ and DZ cells of either high or low affinity to identify unique gene signatures.

Publication Title

Differentiation of germinal center B cells into plasma cells is initiated by high-affinity antigen and completed by Tfh cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon E-TABM-919
Transcription profiling by array of Arabidopsis with RNAi-mediated knockdown of RBR after treatment with beta estradiol
  • organism-icon Arabidopsis thaliana
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

RNA was labeled and hybridized to ATH1 arrays.

Publication Title

Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production.

Sample Metadata Fields

Specimen part, Compound

View Samples
accession-icon GSE54850
Dynamic mRNA gene expression during a nutritional downshift from glutamine to proline
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic mRNA gene expression from the wildtype YSBN6 during a nutritional downshift from glutamine to proline. Glutamine and proline were initially together in the media, with cells consuming exlusively glutamine (proline utilization inhibited due to nitrogen catabolite repression). The concentration of glutamine was frequently evaluated at-line, and the moment at which glutamine was not detected anymore is referred to as the time of the shift.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE54851
Dynamic mRNA gene expression following a rapamycin treatment
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Dynamic mRNA gene expression from the wildtype YSBN6 during a rapamycin treatment (rapamycin-induced downshift). Rapamycin was added to yeast cells growing exponentially on glutamine as sole nitrogen source.

Publication Title

Inferring causal metabolic signals that regulate the dynamic TORC1-dependent transcriptome.

Sample Metadata Fields

Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact