Animal models have enhanced our understanding of the pathogenesis of autoimmune diseases. For these models, genetically identical, inbred mice have commonly been used. Different inbred mouse strains, however, show a high variability in disease manifestation. Identifying the factors that influence this disease variability could provide unrecognized insights into pathogenesis. We established a novel antibody transfer-induced model of epidermolysis bullosa acquisita (EBA), an autoimmune disease characterized by (muco)-cutaneous blistering caused by anti-type VII collagen (COL7) autoantibodies. Blistering after anti-COL7 IgG (directed against the von-Willebrand-factor A like domain 2) transfer showed clear variability among inbred mouse strains; i.e. severe cutaneous blistering and inflammation in C57Bl/6J, and absence of skin lesions in MRL/MpJ mice. The transfer of anti-COL7 IgG into irradiated, EBA-resistant MRL/MpJ mice, rescued by transplantation with bone marrow from EBA-susceptible B6.AK-H2k mice, induced blistering. To the contrary, irradiated EBA-susceptible B6.AK-H2k mice that were rescued using MRL/MpJ bone marrow were devoid of blistering. In vitro, immune complex activation of neutrophils from C57Bl/6J or MRL/MpJ mice showed an impaired ROS release from the latter, whereas no differences were observed after PMA activation. This finding was paralleled by divergent expression profiles of immune-complex activated neutrophils from either C57Bl/6J or MRL/MpJ mice. Collectively, we demonstrate that radiosensitive cells determine the varying extent of skin inflammation and blistering in the end-stage effector phase of EBA.
Radiosensitive Hematopoietic Cells Determine the Extent of Skin Inflammation in Experimental Epidermolysis Bullosa Acquisita.
Disease
View SamplesHead and neck cancer is a hetergeneous disease. Based on previoulsy defined molecular subtypes we associated gene expression with response to different compounds. We used microarry gene expression for molecular subtyping
Basal subtype is predictive for response to cetuximab treatment in patient-derived xenografts of squamous cell head and neck cancer.
No sample metadata fields
View SamplesUsing these samples, it has been shown that the transcriptional landscape in glomeruli of Ercc1[-/] mice at a rather young age of 14 weeks mimics that of mice which have undergone real-life renal aging. Thus, young Ercc1[-/] mice can be used as a model system for glomerular aging in future studies.
No associated publication
Age
View SamplesElevated levels of adsorbable organic bromine compounds (AOBr) have been detected in German lakes, and cyanobacteria like Microcystis, which are known for the synthesis of microcystins, are one of the main producers of natural organobromines. However, very little is known about how environmental realistic concentrations of organobromines impact invertebrates. Here, the nematode C. elegans was exposed to AOBr-containing surface water samples and to a Microcystis aeruginosa enriched batch culture (MC-BA) and compared to single organobromines and microcystin-LR exposures. Stimulatory effects were observed in certain life trait variables, which were particularly pronounced in nematodes exposed to MC-BA. A whole genome DNA-microarray revealed that MC-BA led to the differential expression of more than 2000 genes, many of which are known to be involved in metabolic, neurologic, and morphologic processes. Moreover, the up-regulation of cyp- and the down-regulation of abu-genes suggested the presence of chronic stress. However, the nematodes were not marked by negative phenotypic responses. The observed difference in MC-BA and microcystin-LR (which impacted lifespan, growth and reproduction) exposed nematodes was hypothesized to be likely due to other compounds within the batch culture. Most likely the exposure to low concentrations of organobromines appears to buffer the effects of toxic substances, like microcystin-LR.
No associated publication
No sample metadata fields
View SamplesThe methyl-cytosine binding protein 2 (MeCP2) is a reader of epigenetic DNA methylation marks and necessary and sufficient to reorganize 3D heterochromatin structure during cellular differentiation, e.g., myogenesis. In addition to global expression profile changes, myogenic differentiation is accompanied by 3D-heterochromatin reorganization that is dependent on MeCP2. MeCP2 is enriched at pericentric heterochromatin foci (chromocenters). During myogenesis, the total heterochromatin foci number per nucleus decreases while foci volumes and MeCP2 protein levels increase. Ectopic MeCP2 is able to mimic similar heterochromatin restructuring in the absence of differentiation.
Gene repositioning within the cell nucleus is not random and is determined by its genomic neighborhood.
Specimen part, Cell line
View SamplesAbiotic stress is a major factor for crop productivity, a problem likely to be exacerbated by climate change. Improving the tolerance to environmental stress is one of the most important goals of crop breeding programmes. While the early responses to abiotic stress in plants are well studied, plant adaptation to enduring or recurring stress conditions has received little attention. This project investigates the molecular mechanism of the maintenance of acquired thermotolerance as a model case of stress memory in Arabidopsis. Arabidopsis seedlings acquire thermotolerance through a heat treatment at sublethal temperatures. To investigate the underlying mechanisms, we are investigating changes in the transcriptome at two timepoints after a heat acclimation treatment using Arabidopsis thaliana seedlings.
Arabidopsis miR156 Regulates Tolerance to Recurring Environmental Stress through SPL Transcription Factors.
Treatment
View SamplesTransposable elements (TEs) make up a large proportion of eukaryotic genomes. As their mobilization creates genetic variation that threatens genome integrity, TEs are epigenetically silenced through several pathways and this may spread to neighboring sequences. JUMONJI (JMJ) proteins can function as anti-silencing factors and prevent silencing of genes next to TEs. Whether TE silencing is counterbalanced by the activity of anti-silencing factors is still unclear. Here, we characterize JMJ24 as a regulator of TE silencing. We show that loss of JMJ24 results in increased silencing of the DNA transposon AtMu1c, while overexpression of JMJ24 reduces silencing. JMJ24 has a JumonjiC (JmjC) domain and two RING domains. JMJ24 auto-ubiquitinates in vitro, demonstrating E3 ligase activity of the RING domain(s). JMJ24-JmjC binds the N-terminal tail of histone H3 and full-length JMJ24 binds histone H3 in vivo. JMJ24 activity is anti-correlated with histone H3 lysine 9 dimethylation (H3K9me2) levels at AtMu1c. Double mutant analyses with epigenetic silencing mutants suggest that JMJ24 antagonizes histone H3K9me2, and requires H3K9 methyltransferases for its activity on AtMu1c. Genome-wide transcriptome analysis indicates that JMJ24 affects silencing at additional TEs. Our results suggest that the JmjC domain of JMJ24 has lost demethylase activity but has been retained as a binding domain for histone H3. This is in line with phylogenetic analyses indicating that JMJ24 [with the mutated JmjC domain] is widely conserved in angiosperms. Taken together, this study assigns a role in TE silencing to a conserved JmjC-domain protein with E3 ligase activity, but no demethylase activity.
A JUMONJI Protein with E3 Ligase and Histone H3 Binding Activities Affects Transposon Silencing in Arabidopsis.
No sample metadata fields
View SamplesWe performed a comprehensive molecular and cellular analysis of primary dermal fibroblasts taken from a patient with recurrent cancers, harboring a BRCA1 mosaic epimutation (BRCA1mosMe) in comparison to their isogenic control fibroblasts (BRCA1wt), taken from the patients healthy monozygous sister.
No associated publication
Specimen part, Disease
View SamplesVery small embryonic-like (VSEL) cells have been described as putatively pluripotent stem cells present in murine bone marrow and human umbilical cord blood (hUCB) and as such are of high potential interest for regenerative medicine. However, there remain some questions concerning the precise identity and properties of VSEL cells, particularly those derived from hUCB. For this reason, we have carried out an extensive characterisation of purified populations of VSEL cells from a large number of UCB samples. Consistent with a previous report, we find that VSEL cells are CXCR4+, have a high density, are indeed significantly smaller than HSC and have an extremely high nuclear/cytoplasmic ratio. Their nucleoplasm is unstructured and stains strongly with Hoechst 33342. A comprehensive FACS screen for surface markers characteristic of embryonic, mesenchymal, neuronal or hematopoietic stem cells revealed negligible expression on VSEL cells. These cells failed to expand in vitro under a wide range of culture conditions known to support embryonic or adult stem cell types and a microarray analysis revealed the transcriptional profile of VSELs to be clearly distinct both from well-defined populations of pluripotent and adult stem cells and from the mature hematopoietic lineages. Finally, we detected an aneuploid karyotype in the majority of purified VSEL cells by fluorescence in situ hybridisation. These data support neither an embryonic nor an adult stem cell like phenotype, suggesting rather that hUCB VSEL are an aberrant and inactive population that is not comparable to murine VSEL.
No associated publication
Specimen part
View SamplesPolyethylene glycol sorbitan monoacylates (Tween) are detergents of widespread use in plant sciences. We show them, notably Tween 20, to cause a rapid and complex change in transcript abundance which bears all characteristics of a PAMP / elicitor-induced defense response, and they do so at concentrations which cause no detectable deleterious effects on plant cellular integrity. The activity does not reside in the intact Tween molecule itself, but is caused by medium-chain fatty acids, notably lauric acid (LA), which are efficiently released from the Tween-backbone by the plant. The Tween / LA-response is independent of the jasmonate signalling system. Medium-chain fatty acids are thus novel elicitors/regulators of plant pathogen defense. The results also have several practical implications: (i) The use of Tweens and, as we show, several other detergents, as solvating/wetting agents on intact plants causes profound physiological changes which may mask actual effects of test compounds; (ii) Tweens by themselves can be regarded (and probably used) as economical, non-toxic, and safe-to-apply elicitors of inducible plant immunity against pathogens.
A novel regulatory system in plants involving medium-chain fatty acids.
Age
View Samples