MALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-B pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-B target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-B target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS.
No associated publication
No sample metadata fields
View SamplesProper regulation of nuclear factor B (NF-B) transcriptional activity is required for normal lymphocyte function, and deregulated NF-B signaling can facilitate lymphomagenesis. We demonstrate that the API2-MALT1 fusion oncoprotein created by the recurrent t(11;18)(q21;q21) in mucosa-associated lymphoid tissue (MALT) lymphoma induces proteolytic cleavage of NF-Binducing kinase (NIK) at arginine 325. NIK cleavage requires the concerted actions of both fusion partners and generates a C-terminal NIK fragment that retains kinase activity and is resistant to proteasomal degradation. The resulting deregulated NIK activity is associated with constitutive noncanonical NF-B signaling, enhanced B cell adhesion, and apoptosis resistance. Our study reveals the gain-of-function proteolytic activity of a fusion oncoprotein and highlights the importance of the noncanonical NF-B pathway in B lymphoproliferative disease.
Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation.
No sample metadata fields
View SamplesMALT lymphoma is characterized by t(11;18)(q21;q21)/API2-MALT1, t(1;14)(p22;q32)/BCL10-IGH and t(14;18)(q32;q21)/IGH-MALT1, which commonly activate the NF-B pathway. Gastric MALT lymphomas harboring such translocation do not respond to H. pylori eradication, while those without translocation can be cured by antibiotics. To understand the molecular mechanism of these different MALT lymphoma subgroups, we performed gene expression profiling analysis of 24 MALT lymphomas (15 translocation-positive, 9 translocation-negative). Gene set enrichment analysis (GSEA) of the NF-B target genes and 4394 additional gene sets covering various cellular pathways, biological processes and molecular functions showed that translocation-positive MALT lymphomas are characterized by an enhanced expression of NF-B target genes, particularly TLR6, CCR2, CD69 and BCL2, while translocation-negative cases were featured by active inflammatory and immune responses, such as IL8, CD86, CD28 and ICOS. Separate analyses of the genes differentially expressed between translocation-positive and negative cases and measurement of gene ontology term in these differentially expressed genes by hypergeometric test reinforced the above findings by GSEA. Finally, expression of TLR6, in the presence of TLR2, enhanced both API2-MALT1 and BCL10 mediated NF-B activation in vitro. Our findings provide novel insights into the molecular mechanism of MALT lymphomas with and without translocation, potentially explaining their different clinical behaviors.
Differential expression of NF-kappaB target genes in MALT lymphoma with and without chromosome translocation: insights into molecular mechanism.
No sample metadata fields
View SamplesThe chemokine decoy receptor D6 internalises and degrades inflammatory CC chemokines enabling resolution of inflammation. In D6 deficient mice (D6 KO), otherwise innocuous cutaneous inflammatory stimuli induce a grossly exaggerated inflammatory response that bears many similarities to human psoriasis. In the present study we have used transcriptomic approaches to define the molecular make up of this response.
Microarray analyses demonstrate the involvement of type I interferons in psoriasiform pathology development in D6-deficient mice.
Sex, Specimen part, Treatment, Time
View SamplesThis study set out to examine CD4 T cell differentiation in a mouse model of diabetes based on transgenic expression of ovalbumin under the control of the rat insulin promoter and co-expression of the DO11.10 transgene (DO11 x rip-mOVA mice). The transcriptome of T cells isolated from the pancreatic lymph nodes (lymph nodes draining the site of self antigen expression) was compared with that of T cells isolated from inguinal lymph nodes (non-draining lymph nodes). T cells were sorted based on expression of CD4, DO11.10 TCR (KJ-126), CD25 and CD69.
Follicular helper T cell signature in type 1 diabetes.
Specimen part
View SamplesComparison of the changes in mitochondrial gene expression of cells in which extracellular growth factors and/or mitogens have been added.
Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis.
Specimen part
View SamplesGene expression measurements in Thp, Th1 and Th2 cells polarised from naIve CD4+ T-cells isolated from wildtype and T-bet fl/fl x Cd4-Cre BALB/c mice or from WT and Gata-3 fl/fl x Tnfrsf4-Cre C57BL/6 mice.
T-bet and GATA-3 act in combination through distal regulatory elements across the genome
Specimen part
View SamplesActivated but not resting Tregs affect NK cell differentiation.
No associated publication
Specimen part, Treatment
View SamplesThe striking PNS regenerative response to injury rests on the plasticity of adult Schwann cells and their ability to transit between differentiation states, a highly unusual feature in mammals. Using mice with inactivation of Schwann cell c-Jun, we show that the injury response involves c-Jun dependent natural reprograming of differentiated cells to generate a distinct Schwann cell state specialized to promote regeneration. Transected distal stumps of c-Jun mutants show 172 disregulated genes, resulting in abnormal expression of growth factors, adhesion molecules and cytoskeletal changes that lead to neuronal death, inhibition of axon growth and striking failures of functional repair after injury. These observations provide a molecular basis for understanding Schwann cell plasticity and nerve regeneration. They offer conclusive support for the notion that Schwann cells control repair in the PNS, using dedicated transcriptional controls to generate a distinct repair cell, a transition that shows similarities to transdifferentiation seen in other systems.
No associated publication
Specimen part, Treatment
View SamplesComparison of the changes in the gene expression profile of cells in which there is an activation of the Raf oncogene in the absence of any other extracellular signals
No associated publication
Specimen part
View Samples