In this study we investigated the changes in mRNA expression upon treatment of SH-SY5Y cells to 10M cisplatin for 72h.
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.
Specimen part, Cell line, Treatment
View SamplesWe found that composition of cell subsets within the CD34+ cell population is markedly altered in chronic phase (CP) chronic myeloid leukemia (CML). Specifically, proportions and absolute cell counts of common myeloid progenitors (CMP) and megakaryocyte-erythrocyte progenitors (MEP) are significantly greater in comparison to normal bone marrow whereas absolute numbers of hematopoietic stem cells (HSC) are equal. To understand the basis for this, we performed gene expression profiling (Affymetrix HU-133A 2.0) of the distinct CD34+ cell subsets from six patients with CP CML and five healthy donors. Euclidean distance analysis revealed a remarkable transcriptional similarity between the CML patients' HSC and normal progenitors, especially CMP. CP CML HSC were transcriptionally more similar to their progeny than normal HSC to theirs, suggesting a more mature phenotype. Hence, the greatest differences between CP CML patients and normal donors were apparent in HSC including downregulation of genes encoding adhesion molecules, transcription factors, regulators of stem-cell fate and inhibitors of cell proliferation in CP CML. Impaired adhesive and migratory capacities were functionally corroborated by fibronectin detachment analysis and transwell assays, respectively. Based on our findings we propose a loss of quiescence of the CML HSC on detachment from the niche leading to expansion of myeloid progenitors.
The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence.
No sample metadata fields
View SamplesMultiple myeloma (MM) is a clonal plasma cell disorder frequently accompanied by hematopoietic impairment. Genomic profiling of distinct HSPC subsets revealed a consistent deregulation of signaling cascades, including TGF beta signaling, p38MAPK signaling and pathways involved in cytoskeletal organization, migration, adhesion and cell cycle regulation in MM patients.
Multiple myeloma-related deregulation of bone marrow-derived CD34(+) hematopoietic stem and progenitor cells.
Specimen part, Disease, Disease stage
View SamplesAcute myeloid leukemia is a heterogeneous disease with regard to the underlying genetic and molecular pathophysiology. Non-steroidal anti-inflammatory drugs (NSAIDs) exert significant anti-proliferative effects in various malignant cells in vitro and in vivo. Hence, these agents can be utilized to study potential disease specific anti-proliferative pathways. In this study, a total number of 42 bone marrow derived CD34+ cells from de novo AML patients and the AML cell lines THP-1 and HL-60 were treated with the NSAIDs Sulindac sulfide and Diclofenac. We examined viability, apoptosis, differentiation and addressed the molecular mechanisms involved. We found a consistent induction of apoptosis and to some extent myeloid differentiation in NSAID treated AML cells. Comprehensive protein and gene expression profiling of Diclofenac treated AML cells revealed transcriptional activation of GADD45 and its downstream MAPK/JNK pathway as well as increased protein levels of the Caspase-3 precursor. This points towards a role of the c-Jun NH2-terminal kinase (JNK) in NSAID mediated apoptosis. This was dependent on JNK activity as addition of a specific JNK-inhibitor abrogated apoptosis. Furthermore, the AP-1 transcription factor family members c-Jun, JunB and Fra-2 were transcriptionally activated in NSAID treated AML cells. Re-expression of these transcription factors led to activation of GADD45 with induction of apoptosis. Mechanistically, we demonstrate that NSAIDs induce apoptosis in AML through a novel pathway involving increased expression of AP-1 heterodimers, which by itself is sufficient to induce GADD45 expression with consecutive activation of JNK and induction of apoptosis.
No associated publication
Disease, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage, Cell line
View SamplesNijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage, Cell line
View SamplesNijmegen Breakage Syndrome (NBS) is a rare autosomal recessive genetic disorder, first described 1981 in Nijmegen, Holland. The characteristics of NBS include genomic instability (resulting in early onset of malignancies), premature aging, microcephaly and other growth retardations, immune deficiency, and impaired puberty and fertility in females. The consequence of these manifestations is a severe decrease in average life span, caused by cancer or infection of the respiratory and urinary tract. We reprogrammed fibroblasts from NBS patients into induced pluripotent stem cells (iPSCS) to bypass premature senescence and to generate an unlimited cell source for modeling purposes. We screened the influence of antioxidants on intracellular levels of ROS and DNA damage and found that EDHB was able to decrease DNA damage in the presence of high oxidative stress. Furthermore, we found that NBS fibroblasts, but not NBS-iPSCs were more susceptible to the induction of DNA damage than their normal counterparts. We performed global transcriptome analysis comparing NBS to normal fibroblasts and NBS-iPSCs to hESCs. There, we found, that TP53 was activated and cell cycle genes broadly down-regulated in NBS fibroblasts and up-regulation of glycolysis specifically in NBS-iPSCs.
Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants.
Specimen part, Disease, Disease stage
View SamplesmicroRNAs, important regulators of cell proliferation and apoptosis, have been shown to be involved in the pathogenesis of acute myeloid leukemia in adulthood AML. However, comprehensive studies in AML of children and adolescents are missing so far. We investigated the miRNA expression profiles of different AML subtypes from 102 pediatric patients in comparison to CD34+ cells from healthy donors and adult AML patients, in order to identify differentially expressed miRNAs. Pediatric samples with core factor binding acute myeloid leukemia and promyelocytic leukemia could be distinguished from each other and MLL rearranged AML subtypes by 9 and 18 miRNAs, respectively. miR-126, -146a, -181a/b, -100, and miR-125b were identified as highest differentially expressed with marked difference of expression between pediatric and adulthood samples of the same cytogenetic subgroup. We next isolated the miRNA targeting complex from t(8;21) and t(15;17) cell line models and comprehensively identified bound miRNAs and targeted mRNAs by a newly devised immunoprecipitation assay followed by rapid microarray detection. Our findings indicate separate binding preferences for the four human Argonaute proteins. Subsequent bioinformatic analysis revealed a concerted action of different Ago proteins in the regulation of AML-relevant pathways, providing an experimental based database of miRNA-mRNA target interaction in Argonaute proteins.
MicroRNAs distinguish cytogenetic subgroups in pediatric AML and contribute to complex regulatory networks in AML-relevant pathways.
Specimen part
View SamplesGlioblastoma is the most common primary malignant brain tumor occurring in the central nervous system and is characterized by rapid proliferation, genetic aberrations and poor response to treatment. The classical genetic alterations in glioblastoma target pathways governing cellular proliferation, cellular survival, invasion and angiogenesis. In this study, the regulation of glioblastoma-relevant pathways by small non-coding RNAs was analyzed by identification of Argonaute protein-associated microRNAs and mRNAs. We utilized a highly controlled method termed PAR-CLIP-Array by biochemical isolation of cross-linked ribonucleoprotein complexes with monoclonal antibodies specific for individual Argonaute proteins followed by microarray detection. We demonstrate here that the different Argonaute proteins bind different subsets of miRNAs and mRNAs in a glioblastoma cell line model. By extending our study generating miRNA-mRNA network interaction models we could further show, that different Argonaute proteins act in concert to regulate glioblastoma-relevant pathways. We therefore provide novel insights into glioblastoma regulation by microRNAs.
No associated publication
Specimen part, Disease, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The impact of TEL-AML1 (ETV6-RUNX1) expression in precursor B cells and implications for leukaemia using three different genome-wide screening methods.
Specimen part, Disease, Disease stage, Cell line
View Samples