The objectives of this investigation were to examine changes in the host transcriptional profiles during a Porphyromonas gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis strain 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles.
Age, Specimen part
View SamplesThe objectives of this investigation were to examine changes in the host transcriptional profiles during a Treponema denticola infection using a murine calvarial model of inflammation and bone resorption. T. denticola ATCC 35404 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Molecular characterization of Treponema denticola infection-induced bone and soft tissue transcriptional profiles.
Age, Specimen part
View SamplesThe objectives of this investigation were to examine changes in the host transcriptional profiles during a polymicrobial periodontal pathogens Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381, T. denticola ATCC 35404, and T. forsythia ATCC 43037 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Polymicrobial periodontal pathogen transcriptomes in calvarial bone and soft tissue.
Age, Specimen part
View SamplesThe objectives of this investigation were to examine changes in the host transcriptional profiles during a Tannerella forsythia infection using a murine calvarial model of inflammation and bone resorption. T. forsythia ATCC 43037 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip MG-MOE430A Affymetrix arrays to provide a molecular profile of the events that occur following infection of these tissues.
Tannerella forsythia infection-induced calvarial bone and soft tissue transcriptional profiles.
Age, Specimen part
View SamplesThe genetic mechanism governing the spatial patterning of teeth still remains to be elucidated. Sonic hedgehog (Shh) is one of key signaling molecules involved in the spatial patterning of teeth. By utilizing maternal transfer of 5E1 (an IgG1 monoclonal antibody against Shh protein) through the placenta to block Shh signaling, we investigated the changes in tooth patterning and in gene expression.
Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth.
Specimen part, Time
View SamplesThe aim of this study was to evaluate and compare the gene expression profiles of dental follicle and periodontal ligament in humans, which can possibly explain their functions of dental follicle and PDL such as eruption coordination and stress resorption. That may apply this information to clinical problem like eruption disturbance and to periodontal tissue engineering.
Comparative gene-expression analysis of the dental follicle and periodontal ligament in humans.
Specimen part
View SamplesHuman deciduous and permanent teeth exhibit different developmental processes, morphologies, histological characteristics and life cycles. In addition their pulp tissues react differently to external stimuli, such as the pulp sensitivity test, dental trauma and pulp therapy materials. These differences are attributable to their genetic backgrounds. Therefore the purpose of this study is to compare the differences of dental pulp in deciduous and permanent teeth.
Distinctive genetic activity pattern of the human dental pulp between deciduous and permanent teeth.
Specimen part
View SamplesWe performed this study to compare the gene expression pattern between coronal pulp and apical pulp complex
Comparative Gene Expression Analysis of the Coronal Pulp and Apical Pulp Complex in Human Immature Teeth.
Specimen part
View SamplesThere are histological and functional differences between human deciduous and permanent pediodontal ligament (PDL) tissues. The purpose of this study was to determine the differences between these two types of tissue at the molecular level by comparative gene expression analysis.
Comparative gene expression analysis of the human periodontal ligament in deciduous and permanent teeth.
Specimen part
View SamplesThe periodontal ligament(PDL) and dental pulp tissues of human permanent teeth have a number of differences in their developmental processes, histological characteristics and functions. It can be figured out that these differences are attributable to genetic backgrounds of their cells organized tissues. The purpose of this study was to identify the gene-expression profiles and their molecular biological differences of periodontal ligament and dental pulp tissues from the human permanent teeth.
No associated publication
Specimen part
View Samples