refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14994 results
Sort by

Filters

Technology

Platform

accession-icon GSE64592
The tumor heterogeneity of high grade serous ovarian cancer identified by stem cloning technique
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Little is known about a relationship between intratumor heterogeneity and drug resistant ability in high grade serous ovarian cancer. Using stem cell cloning technique on high grade ovarian cancer, we have cloned ovarian cancer colonies at high efficiency. The heterogeneity of ovarian cancer is recapitulated in cloned cancer colony library, and Taxol treatment (100 nM 3 hrs) has been conducted on cancer library and obtained drug resistant cancer clones in vitro. Using cloned original cancer colonies and drug resistant cancer colonies, we have studied the effect of intratumor heterogeneity on acquisition of drug resistance.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65013
Cell cloning of Barrett's esophagus stem cell, gastric cardia stem cells and normal esophagus stem cells
  • organism-icon Homo sapiens
  • sample-icon 66 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Barretts esophagus confers significant risk of esophageal adenocarcinoma. We have established the cloning of patient-matched stem cells of Barretts, gastric, and esophageal epithelium. Barrett's esophagus stem cells (BE), gastric cardia stem cells (GC) and normal esophagus stem cells (Eso) from 12 patients were cloned (For BE: 12 patients, GC: 12 patients and Eso: 2 patients). Keratin 5 positive and Keratin 7 positive cells were cloned from human fetal esophageal epithelium. Using air liquid interface culture system, stem cells were induced to differentiate into mature epithelial structures.

Publication Title

Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE66749
Cloning and Variation of Ground State Intestinal Stem Cells Super [expression & SNP studies]
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cloning and variation of ground state intestinal stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69428
Transformation of Human Fallopian Tube Stem Cells and high grade serous ovarian cancer
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

High-grade serous ovarian cancer (HGSOC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and oviducts in patients with BRCA mutations revealed that premalignant HGSC is found almost exclusively in the fallopian tube. To validate this notion, we cloned and transformed the fallopian tube stem cells (FTSC). We demonstrated that the tumors derived from the transformed fallopian tube stem cells (FTSCt) share the similar histological and molecular feature of high-grade serous cancer. In addition, a whole-genome transcriptome analysis comparing between FTSC, immortalized fallopian tube stem cells (FTSCi), and FTSCt showing a clear molecular progression, which is mimicked by the gene expression comparison between laser captured normal oviducts and HGSOC ( cancer and paired normal samples from 10 patients).

Publication Title

In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE57584
Cloning and Variation of Ground State Intestinal Stem Cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Despite major advances with embryonic and induced pluripotent stem cells or lineage-committed, p63-expressing stem cells of stratified epithelia, we know less about the indigenous stem cells of the gastrointestinal tract, pancreas, liver, and other columnar epithelia which collectively resist cloning in their elemental states. Here we demonstrate the cloning of highly immature epithelial stem cells from defined regions of the human intestine and colon. We show that single cell-derived pedigrees can be propagated indefinitely while often sustaining minimal copy number and sequence variation. Despite prolonged cultivation, these pedigrees from disparate regions of the intestinal tract respond to identical differentiation signals by formation of epithelia with eponymous structural and gene expression features. These data suggest developmental patterning of cell-autonomous commitment programs in stem cells that enforce specialization along the gastrointestinal tract and predict the utility of these cells in disease modeling and regenerative medicine.

Publication Title

Cloning and variation of ground state intestinal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63880
Modeling Clostridium difficile infections
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Clostridium difficile (Cd) is a gram-positive, spore-forming bacterium and the primary cause of nosocomial diarrhea and pseudomembranous colitis. The pathogenicity of Cd has been linked to its production of TcdA and TcdB. While they cause fluid secretion, inflammation, and colonic damage, their respective and synergistic roles have been difficult to ascertain. In infection animal model, TcdB has been demonstrated to be a key virulence factor, and TcdB causes obvious damage in human and porcine colonic explants. Using the colonic epithelia derived from cloned colonic stem cells, we have developed a model to test the response to TcdB. Epithelia generated in air-liquid interface cultures from cloned transverse colon stem cells were challenged with TcdB at different concentrations and durations.

Publication Title

Cloning and variation of ground state intestinal stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE64894
Transformation of Barrett's esophagus stem cell, gastric cardia stem cells and normal esophagus stem cells
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Barretts esophagus confers significant risk of esophageal adenocarcinoma. We have established the cloning of patient-matched stem cells of Barretts, gastric, and esophageal epithelium. Transplantation of transformed Barretts stem cells yielded tumors with hallmarks of esophageal adenocarcinoma, whereas transformed esophageal stem cells produced squamous cell carcinomas. These findings define a stem cell target in a precancerous lesion for preemptive therapies.

Publication Title

Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE69429
Molecular analysis of normal oviduct, STIC and invasive serous cancer
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

High-grade serous cancer (HGSC) progresses to advanced stages without symptoms and the 5-year survival rate is a dismal 30%. Recent studies of ovaries and fallopian tubes in patients with BRCA mutations revealed that pre-metastatic HGSC is found almost exclusively in the fallopian tube in a lesion termed serous tubal intraepithelial carcinoma or STIC. We have performed laser captured microdissection (LCM) of normal oviduct, STIC and invasive serous cancer from each patient. A whole-genome transcriptome analysis comparing between normal oviduct, STIC and invasive serous cancer were performed. We demonstrated a clear molecular progression from normal to STIC, which shared the gene expression patterns with invasive serous cancer, suggesting a new set of genes as basis of novel detection and therapeutic approaches to HGSC at its earliest stage.

Publication Title

In vitro and in vivo correlates of physiological and neoplastic human Fallopian tube stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE58842
PAX2-null progenitors define multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The oviducts contain high grade serous cancer precursors, which are -H2AXp and p53 mutation positive. Secretory cell outgrowths (SCOUTs) are associated with older age and serous cancer. We evaluated PAX2 expression in proliferating oviductal cells, normal mucosa, SCOUTs, Walthard cell nests, STINs and HGSCs. Non-ciliated cells in normal mucosa were PAX2 positive but became PAX2 negative in multilayered epithelium. PAX2 negative SCOUTs fell into two groups; Type I were secretory or secretory/ciliated with a tubal phenotype and were ALDH1 negative. Type II displayed a columnar to pseudostratified phenotype, with an EZH2,ALDH1, -catenin, Stathmin, LEF1, RCN1 and RUNX2 expression signature . This study, for the first time, links PAX2 negative with proliferating fetal and adult oviductal cells undergoing basal and ciliated differentiation and shows that this expression state is maintained in SCOUTs, STINs and HGSCs. All three entities can demonstrate a consistent perturbation of genes involved in potential tumor suppressor gene silencing (EZH2), transcriptional regulation (LEF1), regulation of differentiation (RUNX2) calcium binding (RCN1) and oncogenesis (Stathmin). This shared expression signature between benign and neoplastic entities links normal progenitor cell expansion to abnormal and neoplastic outgrowth in the oviduct and exposes a common pathway that could be a target of early prevention.

Publication Title

The PAX2-null immunophenotype defines multiple lineages with common expression signatures in benign and neoplastic oviductal epithelium.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE49292
Cloning Barretts esophagus stem cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Barretts esophagus is a precancerous lesion that confers a significant risk of esophageal adenocarcinoma. Strategies for selective eradication of Barretts have been stymied by our inability to identify the Barretts stem cell. Here we employ novel technologies to clone patient-matched stem cells of Barretts, gastric, and esophageal epithelium. Genomic analyses of Barretts stem cells reveal a patient-specific mutational spectrum ranging from low somatic variation similar to patient-matched gastric epithelial stem cells to ones marked by extensive heterozygous alteration of genes implicated in tumor suppression, epithelial planarity, and epigenetic regulation. Transplantation of transformed Barretts stem cells yields tumors with hallmarks of esophageal adenocarcinoma, whereas transformed esophageal stem cells yield squamous cell carcinomas. Thus Barretts develops from cells distinct from local eponymous epithelia, emerges without obvious driver mutations, and likely progresses through and from the generation of dominant clones. These findings define a stem cell target for preemptive therapies of a precancerous lesion.

Publication Title

Mutational spectrum of Barrett's stem cells suggests paths to initiation of a precancerous lesion.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact