This SuperSeries is composed of the SubSeries listed below.
No associated publication
Sex, Specimen part, Time
View SamplesLiver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration.
No associated publication
Sex, Specimen part, Time
View SamplesSmac mimetics are considered as promising cancer therapeutics, but little is yet known about how they alter gene expression. In this study we used an unbiased genome-wide expression array to investigate Smac mimetic BV6-induced gene regulation in breast cancer cell lines. Kinetic analysis revealed that BV6 alters gene expression in two waves. The first wave primarily involves NF-B- and AP-1 families of transcription factors, while the second wave largely depends on tumor necrosis factor receptor 1 (TNFR1) signaling. Interestingly, disrupting auto-/paracrine tumor necrosis factor- (TNF)/ (TNFR1) signaling by knockdown of TNFR1 strongly attenuates the BV6-induced second wave of gene expression and upregulation of many pathways including NF-B signaling, apoptosis and immune signalling, but not MAPK signaling pathways. Consistently, BV6 stimulates phosphorylation of cJun, a marker of MAPK cascade activation, irrespective of the presence or absence of the TNF blocking antibody Enbrel. We show here in a comprehensive overview that BV6-induced gene expression in breast cancer cells takes place in a time- as well as TNFR1-dependent manner.
Smac mimetic induces an early wave of gene expression via NF-κB and AP-1 and a second wave via TNFR1 signaling.
Cell line, Treatment
View SamplesThe molecules RhoC and RhoA are essential factors for invasion/metastasis of tumor cells proliferation, respectively. RhoC over-expression was especially linked to aggressive cancers, which requires loss of epithelial polarity and deregulation of cellular adhesion. This epithelial-mesenchymal transition (EMT) includes a change in gene expression pattern through several transcription factors, like Snail, ZEB1 or Twist. Here we analyze the potential of RhoC to induce EMT, migration and invasion and to regulate specific genes involved in tumorigenesis. We established stable MCF-10A cell lines with RhoA/RhoC expression under the control of a doxycycline-regulated trans-activator and a transcriptional silencer allowing conditional expression of RhoA and RhoC, respectively. We additionally quantified the transcriptional response from two bacterial toxins: Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1) and Yersinia pseudotuberculosis Cytotoxic Necrotizing Factor (CNFY) to directly activate the endogenous pool of Rho GTPases and characterized changes in morphology, migration and invasion upon induction of RhoA/RhoC expression or activation by the toxins in MCF-10A grown in two- and three-dimensions. The transcriptome response identified PTGS2 as RhoC specific target genes involved in pro-migratory changes which was experimentally validated.
Specific role of RhoC in tumor invasion and metastasis.
Cell line
View SamplesType I interferons (IFN) are important components of the innate antiviral response. A key signalling pathway activated by IFNa is the Janus kinase signal transducer and activator of transcription (JAKSTAT) pathway. Major components of the pathway have been identified. However, critical kinetic properties that facilitate accelerated initiation of intracellular antiviral signalling and thereby promote virus elimination remain to be determined. By combining mathematical modelling with experimental analysis, we show that control of dynamic behaviour is not distributed among several pathway components but can be primarily attributed to interferon regulatory factor 9 (IRF9), constituting a positive feedback loop. Model simulations revealed that increasing the initial IRF9 concentration reduced the time to peak, increased the amplitude and enhanced termina- tion of pathway activation. These model predictions were experimentally verified by IRF9 over-expression studies. Furthermore, acceleration of signal processing was linked to more rapid and enhanced expression of IFNa target genes. Thus, the amount of cellular IRF9 is a crucial determinant for amplification of early dynamics of IFNa-mediated signal transduction.
Combining theoretical analysis and experimental data generation reveals IRF9 as a crucial factor for accelerating interferon α-induced early antiviral signalling.
Specimen part, Disease, Cell line, Time
View SamplesMale KO (Syt10-Cre/Cre x Bmal1-flox/-) and CON (Syt10-Cre/Cre x Bmal1-+/-) mice were entrained to 12h:12h light:dark conditions for two weeks and sacrificed at 4 different time points (CT1, 7, 13, 19) on the second day after release into constant darkness conditions. Total RNA was isolated from epididymal white adipose tissue biopsies and subjected to microarray hybridization.
No associated publication
Time
View SamplesTimed sleep restriction designed to mimic human shift work was performed over a 2 week period in mice. On the final day, MBH biopsies were collected at 6 hour intervals to exmaine the effects of sleep restriction on circadian gene expression.
No associated publication
Specimen part
View SamplesCellular signal transduction is governed by multiple feedback mechanisms to elicit robust cellular decisions. We combined mathematical modeling and extensive time-resolved data sets in primary erythroid progenitor cells and dissected the roles of the two transcriptional feedback regulators of the SOCS family, CIS and SOCS3 in JAK2/STAT5 signaling. Our model revealed that both feedbacks are most effective at different ligand concentration ranges.
No associated publication
Specimen part
View SamplesLiver regeneration is characterized by a scheduled sequence of inner and intra-cellular signaling events. It starts with an initial inflammatory phase, followed by a period of rapidly proliferating hepatocytes and stopping abruptly when the liver mass is restored. The cytokines hepatocellular growth factor (HGF) and interleukin 6 (IL-6) play a pivotal role during this process with the former driving proliferation that is enhanced by the latter. While the individual importance of HGF and IL6 has been studied comprahensively the role of cross-talk in control of hepatic proliferation is jet largely unknown. To this end, we performed time-resolved transcriptional profiling of of murine hepatocytes stimulated with HGF and IL-6 indiviually as well as in combination. Thorough systematic investigation performing statistical analysis, mathematical formalization of cross-talk effects on the transcriptional level as well as gene-regulatory network inference revealed the transcriptional program of the cross-talk initiated by HGF and IL-6. Using the proliferation associated Hepcidin (Hamp) and Amphiregulin (Areg) as marker genes for liver regeneration we perform exthensive in-silico experiments with the inferred gene-regulatory network for the identification of the most important players in regulation of the proliferation process. Among other genes, this predicted chemokine (C-X-C motif) ligand 10 (Cxcl10) as an important factor in the temporal regulation of proliferation. These predictions were validated by independent in vitro expression data as well as independent in vivo literature data. While Cxcl10 is known to be involved in liver regeneration, our study extend its role towards its temporal orchestration.
No associated publication
Sex, Specimen part, Time
View SamplesActivation of the AKT and ERK signaling pathway is a major contributor to cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell-cycle progression, is poorly understood. Here we study three cell types of hematopoietic origin, in which AKT and ERK signaling is triggered by erythropoietin (Epo). We find that the different cell types exhibit distinct proliferative responses, despite sharing the molecular network for pro-proliferative signaling. Iterating quantitative experiments and mathematical modeling, we show that the cell-type-specific regulation of proliferation emerges from two sources: (1) the protein abundance patterns of signaling components that cause differential flow of signals along the AKT and ERK pathways, and (2) the differential impact of the downstream regulators for protein synthesis and for cell-cycle progression on proliferation. Our integrated mathematical model of Epo-driven proliferation explains cell-type-specific effects of targeted AKT and ERK inhibitors and correctly predicts whether their combined application results in synergy.
Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation.
Sex, Cell line
View Samples