This SuperSeries is composed of the SubSeries listed below.
Integrative survival-based molecular profiling of human pancreatic cancer.
Specimen part, Disease, Disease stage
View SamplesTo perform an integrative profile of human pancreatic cancer (PDAC) to identify prognosis-significant genes and their related pathways.
Integrative survival-based molecular profiling of human pancreatic cancer.
Specimen part, Disease, Disease stage
View SamplesLung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant pulmonary epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of unselected cells. This enhanced migratory capacity was found to be Rac1-dependent and heritable, as evidenced by maintenance of the phenotype through multiple cell divisions continuing more than 8-weeks post-selection. The morphology of this lung epithelial subpopulation was characterized by increased cell protrusion intensity. In a murine model of micrometastatic seeding and pulmonary colonization, the motility-selected premalignant cells exhibit both enhanced survival in short term assays and enhanced outgrowth of premalignant lesions in longer term assays, thus overcoming important aspects of metastatic inefficiency. Overall, our findings indicate that among premalignant pulmonary epithelial cells, subpopulations with heritable motility-related biophysical properties exist, and these may explain micrometastatic seeding occurring early in the pathogenesis of lung cancer. Understanding, targeting, and preventing these critical biophysical traits and their underlying molecular mechanisms may provide a new approach to prevent metastatic behavior.
Identification of a Human Airway Epithelial Cell Subpopulation with Altered Biophysical, Molecular, and Metastatic Properties.
Age, Specimen part
View SamplesCyclooxygenase-2 (COX-2) is upregulated in pancreatic ductal adenocarcinomas (PDAC). However, how COX-2 promotes PDAC development is unclear. While previous studies have evaluated the efficacy of COX-2 inhibition via the use of non steroidal anti-inflammatory drugs (NSAIDs) or the COX-2 inhibitor celecoxib in PDAC models, none have addressed the cell intrinsic vs. microenvironment roles of COX-2 in modulating PDAC initiation and progression. We tested the cell intrinsic role of COX-2 in PDAC progression, using both loss-of-function and gain-of-function approaches. Cox-2 deletion in Pdx1+ pancreatic progenitor cells significantly delays the development of PDAC in mice with K-ras activation and Pten haploinsufficiency. Conversely, COX-2 over-expression promotes early onset and progression of PDAC in the K-ras mouse model. Loss of PTEN function is a critical factor in determining lethal PDAC onset and overall survival. Mechanistically, COX-2 over-expression increases P-AKT levels in the precursor lesions of Pdx1+;K-rasG12D/+;Ptenlox/+ mice in the absence of Pten LOH. In contrast, Cox-2 deletion in the same setting diminishes P-AKT levels and delays cancer progression. These data suggest an important cell intrinsic role for COX-2 in tumor initiation and progression through activation of the PI3K/AKT pathway. PDAC that is independent of intrinsic COX-2 expression eventually develops with decreased FKBP5 and increased GRP78 expression, two alternate pathways leading to AKT activation. Together, these results support a cell intrinsic role for COX-2 in PDAC development and suggest that, while anti-COX-2 therapy may delay the development and progression of PDAC, mechanisms known to increase chemoresistance through AKT activation must also be overcome.
Cell intrinsic role of COX-2 in pancreatic cancer development.
Specimen part
View SamplesAlteration of the PTEN/PI3K pathway is associated with late stage and castrate resistant prostate cancer (CRPC). However, how PTEN loss involves in CRPC development is not clear. Here we show that castration-resistant growth is an intrinsic property of Pten-null prostate cancer (CaP) cells, independent of cancer development stage.PTEN loss suppresses androgen-responsive gene expressions by modulating androgen receptor (AR) transcription factor activity. Conditional deletion of AR in the epithelium promotes the proliferation of Pten-null cancer cells, at least in part, by down-regulating androgen-responsive gene FKBP5 and preventing PHLPP-mediated AKT inhibition. Our findings identify PI3K and AR pathway crosstalk as a mechanism of CRPC development, with potentially important implications for CaP etiology and therapy
Cell autonomous role of PTEN in regulating castration-resistant prostate cancer growth.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells.
Age, Specimen part
View SamplesPTEN loss or PI3K/AKT signaling pathway activation correlates with human prostate cancer progression and metastasis. However, in preclinical murine models, deletion of Pten alone fails to mimic the significant metastatic burden that frequently accompanies the end stage of human disease. To identify additional pathway alterations that cooperate with PTEN loss in prostate cancer progression, we surveyed human prostate cancer tissue microarrays and found that the RAS/MAPK pathway is significantly elevated both in primary and metastatic lesions. In an attempt to model this event, we crossed conditional activatable K-rasG12D/WT mice with the prostate conditional Pten deletion model we previously generated. Although RAS activation alone cannot initiate prostate cancer development, it significantly accelerated progression caused by PTEN loss, accompanied by epithelial-to-mesenchymal transition (EMT) and macrometastasis with 100% penitence. A novel stem/progenitor subpopulation with mesenchymal characteristics was isolated from the compound mutant prostates, which was highly metastatic upon orthotopic transplantation. Importantly, inhibition of RAS/MAPK signaling by PD325901, a MEK inhibitor, significantly reduced the metastatic progression initiated from transplanted stem/progenitor cells. Collectively, these data indicate that activation of RAS/MAPK signaling serves as a potentiating second hit to alteration of the PTEN/PI3K/AKT axis and co-targeting both pathways is highly effective in preventing the development of metastatic prostate cancers.
Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells.
Specimen part
View SamplesThe significance of epithelial-to-mesenchymal transition (EMT)-inducing transcription factors in the onset of non-small cell lung cancer has not been resolved. Here, we report increased Snail expression in pulmonary premalignant lesions relative to histologically normal-appearing pulmonary epithelium. Utilizing immortalized human pulmonary epithelial cells and isogenic derivatives, we document Snail-dependent anchorage-independent growth of the epithelial cells in vitro, as well as transformation, primary tumor growth, and metastatic behavior in vivo. Epithelial splicing regulatory protein 1 (ESRP1) tumor suppressor silencing was a requirement for Snail-driven transformation in vivo, and we identified ESRP1 loss in Snail-expressing pulmonary premalignant lesions in situ. Snail drives these and other carcinogenic signaling programs in an ALDH+CD44+CD24- pulmonary stem cell subset in which ESRP1 and stemness-repressing micro-RNAs are inhibited.
No associated publication
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Obesity accelerates epigenetic aging of human liver.
Sex, Age, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Epigenome-wide and transcriptome-wide analyses reveal gestational diabetes is associated with alterations in the human leukocyte antigen complex.
Specimen part
View Samples