Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans. However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasisrelated genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis, including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.
Two plant-derived aporphinoid alkaloids exert their antifungal activity by disrupting mitochondrial iron-sulfur cluster biosynthesis.
No sample metadata fields
View Samples6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Saccharomyces cerevisiae to investigate the mechanism of action of this compound. 6-NDA elicited a transcriptome response indicative of fatty acid stress, altering the expression of genes known to be affected when yeast cells are grown in the presence of oleate. Mutants of S. cerevisiae lacking transcription factors that regulate fatty acid beta-oxidation showed increased sensitivity to 6-NDA. Fatty acid profile analysis indicated that 6-NDA inhibited the formation of fatty acids longer than 14 carbons in length. In addition, the growth inhibitory effect of 6-NDA was rescued in the presence of exogenously supplied oleate. To investigate the response of a pathogenic fungal species to 6-NDA, transcriptional profiling and biochemical analyses were also conducted in C. albicans. The transcriptional response and fatty acid profile of C. albicans were comparable to those obtained in S. cerevisiae, and the rescue of growth inhibition with exogenous oleate was also observed in C. albicans. In addition, 6-NDA enhanced the potency of the antifungal drug fluconazole in a fluconazole-resistant clinical isolate of C. albicans. Collectively, our results indicate that the antifungal activity of 6-NDA is mediated by a disruption in fatty acid homeostasis, and that this compound has potential utility in combination therapy in the treatment of drug-resistant fungal infections.
A potent plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis.
No sample metadata fields
View SamplesAcrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in rats when administered during early postnatal life. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of genes involved in muscle contraction, pain regulation, and dopaminergic neuronal pathways. First, in agreement with the observed behavioral effects, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified novel genes previously not implicated in acrylamide neurotoxicity that can be further developed into biomarkers for assessing the risk of acrylamide exposure.
Neurobehavioral and transcriptional effects of acrylamide in juvenile rats.
Sex, Specimen part, Treatment
View SamplesSampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with the analysis of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low oxygen conditions. Several additional lines of evidence obtained suggest that these responses could involve effects on heme. First, the hem1 deletion mutant lacking the first enzyme in the heme biosynthetic pathway showed increased sensitivity to sampangine, and exogenously supplied hemin partially rescued the inhibitory activity of sampangine in wild-type cells. In addition, heterozygous mutants with deletions in genes involved in five out of eight steps in the heme biosynthetic pathway showed increased susceptibility to sampangine. Furthermore, spectral analysis of pyridine extracts indicated significant accumulation of free porphyrins in sampangine-treated cells. Transcriptional profiling experiments were also performed in C. albicans to investigate the response of a pathogenic fungal species to sampangine. Taking into account the known differences in the physiological responses of C. albicans and S. cerevisiae to low oxygen, significant correlations were observed between the two transcription profiles suggestive of heme-related defects. Our results indicate that the antifungal activity of the plant alkaloid sampangine is due, at least in part, to perturbations in the biosynthesis or metabolism of heme.
Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine.
No sample metadata fields
View SamplesBackground: Pterostilbene, a naturally occurring phenolic compound produced by agronomically important plant genera such as Vitis and Vacciunium, is a phytoalexin exhibiting potent antifungal activity. Additionally, recent studies have demonstrated several important pharmacological properties associated with pterostilbene. Despite this, a systematic study of the effects of pterostilbene on eukaryotic cells at the molecular level has not been previously reported. Thus, the aim of the present study was to identify the cellular pathways affected by pterostilbene by performing transcript profiling studies, employing the model yeast Saccharomyces cerevisiae. Methods: S. cerevisiae strain S288C was exposed to pterostilbene at the IC50 concentration (70 uM) for one generation (3 h). Transcript profiling experiments were performed on three biological replicate samples using the Affymetrix GeneChip Yeast Genome S98 Array. The data were analyzed using the statistical methods available in the GeneSifter microarray data analysis system. To validate the results, eleven differentially expressed genes were further examined by quantitative real-time RT-PCR, and S. cerevisiae mutant strains with deletions in these genes were analyzed for altered sensitivity to pterostilbene. Results: Transcript profiling studies revealed that pterostilbene exposure significantly down-regulated the expression of genes involved in methionine metabolism, while the expression of genes involved in mitochondrial functions, drug detoxification, and transcription factor activity were significantly up-regulated. Additional analyses revealed that a large number of genes involved in lipid metabolism were also affected by pterostilbene treatment. Conclusions: Using transcript profiling, we have identified the cellular pathways targeted by pterostilbene, an analog of resveratrol. The observed response in lipid metabolism genes is consistent with its known hypolipidemic properties, and the induction of mitochondrial genes is consistent with its demonstrated role in apoptosis in human cancer cell lines. Furthermore, our data show that pterostilbene has a significant effect on methionine metabolism, a previously unreported effect for this compound.
Identification of molecular pathways affected by pterostilbene, a natural dimethylether analog of resveratrol.
No sample metadata fields
View SamplesSampangine, a plant-derived alkaloid found in the Annonaceae family, exhibits strong inhibitory activity against the opportunistic fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. In the present study, transcriptional profiling experiments coupled with the analysis of mutants were performed in an effort to elucidate its mechanism of action. Using Saccharomyces cerevisiae as a model organism, we show that sampangine produces a transcriptional response indicative of hypoxia, altering the expression of genes known to respond to low oxygen conditions. Several additional lines of evidence obtained suggest that these responses could involve effects on heme. First, the hem1 deletion mutant lacking the first enzyme in the heme biosynthetic pathway showed increased sensitivity to sampangine, and exogenously supplied hemin partially rescued the inhibitory activity of sampangine in wild-type cells. In addition, heterozygous mutants with deletions in genes involved in five out of eight steps in the heme biosynthetic pathway showed increased susceptibility to sampangine. Furthermore, spectral analysis of pyridine extracts indicated significant accumulation of free porphyrins in sampangine-treated cells. Transcriptional profiling experiments were also performed in C. albicans to investigate the response of a pathogenic fungal species to sampangine. Taking into account the known differences in the physiological responses of C. albicans and S. cerevisiae to low oxygen, significant correlations were observed between the two transcription profiles suggestive of heme-related defects. Our results indicate that the antifungal activity of the plant alkaloid sampangine is due, at least in part, to perturbations in the biosynthesis or metabolism of heme.
Role of heme in the antifungal activity of the azaoxoaporphine alkaloid sampangine.
No sample metadata fields
View SamplesSodium methyldithiocarbamate (SMD) is one of the most abundantly used conventional pesticides in the U.S. At dosages relevant to occupational exposure, it causes major effects on the immune system in mice, including a decreased resistance to sepsis. This lab has identified some of the mechanisms of action of this compound and some of the immunological parameters affected, but the global effects have not previously been assessed.
No associated publication
Sex, Specimen part
View SamplesAnalysis of early and late changes in the mouse peritoneal cells in response to E. coli induced sepis. Result provide an insight into the molecular function and pathways expressed at these different time points.
Transcriptomic analysis of peritoneal cells in a mouse model of sepsis: confirmatory and novel results in early and late sepsis.
Sex, Treatment
View SamplesThis study compares the gene expression changes in Sus scrofa in response to two different methods for abdominal surgical incisions ; electrosurgery and harmonic blade.
Ultrasonic incisions produce less inflammatory mediator response during early healing than electrosurgical incisions.
Specimen part, Treatment
View SamplesThe main goal of swine production is to convert feedstuffs into edible meat whose major component is skeletal muscle. The overall objective of this project is to study the effect of dietary lysine on the gene expression profile of skeletal muscle in late stage finishing pigs.
No associated publication
Sex, Specimen part
View Samples