refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14980 results
Sort by

Filters

Technology

Platform

accession-icon GSE52730
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51089
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice. [Mouse430_2]
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Wnt-4 signaling is critical for embryonic female sexual development. When Wnt-4 gene is deleted during embryonic development, the knock-out females present a partial sex reversal.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52729
Expression data from E12.5 and E14.5 mouse embryonic gonad of wild type (WT) and Wnt-4 knock-out (KO) mice. [MG_U74Av2]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Wnt-4 signaling is critical for embryonic female sexual development. When Wnt-4 gene is deleted during embryonic development, the knock-out females present a partial sex reversal.

Publication Title

Identification of the genes regulated by Wnt-4, a critical signal for commitment of the ovary.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE107657
Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Three-dimensional (3D) organoids provide a new way to model various diseases, including cancer. We made use of recently developed kidney-organ-primordia tissue-engineering technologies to create novel renal organoids for cancer gene discovery. We then tested whether our novel assays can be used to examine kidney cancer development. First, we identified the transcriptomic profiles of quiescent embryonic mouse metanephric mesenchyme (MM) and of MM in which the nephrogenesis program had been induced ex vivo. The transcriptome profiles were then compared to the profiles of tumor biopsies from renal cell carcinoma (RCC) patients, and control samples from the same kidneys. Certain signature genes were identified that correlated in the developmentally induced MM and RCC, including components of the caveolar-mediated endocytosis signaling pathway. An efficient siRNA-mediated knockdown (KD) of Bnip3, Gsn, Lgals3, Pax8, Cav1, Egfr or Itgb2 gene expression was achieved in mouse RCC (Renca) cells. The live-cell imaging analysis revealed inhibition of cell migration and cell viability in the gene-KD Renca cells in comparison to Renca controls. Upon siRNA treatment, the transwell invasion capacity of Renca cells was also inhibited. Finally, we mixed the nephron progenitors with yellow fluorescent protein (YFP)-expressing Renca cells to establish chimera organoids. Strikingly, we found that the Bnip3-, Cav1- and Gsn-KD Renca-YFP+ cells as a chimera with the MM in 3D organoid rescued, in part, the RCC-mediated inhibition of the nephrogenesis program during epithelial tubules formation. Altogether, our research indicates that comparing renal ontogenesis control genes to the genes involved in kidney cancer may provide new growth-associated gene screens and that 3D RCC-MM chimera organoids can serve as a novel model with which to investigate the behavioral roles of cancer cells within the context of emergent complex tissue structures.

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE40125
Expression data from Amacr knock-out mouse liver and intestine
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Phytol is lethal for Amacr-deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40124
Expression data from Amacr knock-out mouse intestine
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Bile acids play multiple roles in vertebrate metabolism by facilitating lipid absorption in the intestine and acting as a signaling molecule in lipid and carbohydrate metabolism. Bile acids are also the main route to excrete excess cholesterol out of the body. Alpha-methyl-Coa racemase (Amacr) is one of the enzymes needed to produce bile acids from cholesterol. The mouse model lacking Amacr can produce only minor (less than 10%) amounts of bile acids, but still they are symptomless in normal laboratory conditions.

Publication Title

Phytol is lethal for Amacr-deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE2116
SHR-WKY
  • organism-icon Rattus norvegicus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome U34 Array (rgu34a)

Description

Left ventricular gene expression profiles from 12-, 16- and 20-months old spontaneously hypertensive rats (SHRs) were compared with left ventricular profiles seen in age-matched Wistar-Kyoto (WKY) rats by screening Affymetrix U34A arrays (there are 4 samples in each timepoint except 3 samples of 20-months old WKYs).

Publication Title

Distinct upregulation of extracellular matrix genes in transition from hypertrophy to hypertensive heart failure.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51472
Expression data of human aortic valve cusps
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Calcific aortic valve disease is the most common form of valvular heart disease in the Western World. Milder degrees of aortic valve calcification is called aortic sclerosis and severe calcification with impaired leaflet motion is called aortic stenosis.

Publication Title

MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE8730
Effects of TGF-1 on expression profile of human pulp and odontoblasts
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transforming growth factor beta 1 (TGF-1) is the most extensively studied growth factor in dentin-pulp complex, with pleiotropic effects on pulp response and healing. Our main objective was to analyze the expression profile of pulp tissue and odontoblasts, and the effects of TGF-1 on these profiles in cultured human pulp and odontoblasts with a specific interest in the anti- and pro-inflammatory cytokines.

Publication Title

Effects of TGF-beta 1 on interleukin profile of human dental pulp and odontoblasts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48120
Characterization of osteogenic differentiation and gene expression profile of multiple miliary osteoma cutis
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multiple miliary osteoma cutis (MMOC) is a rare skin disorder characterized by heterotopic ossification in dermis and subcutis. The etiology and disease mechanism is unknown, but earlier data indicates that it seems to be different from other diseases containing heterotopic intramembranous ossification. The purpose of this study was to further investigate the pathogenesis of MMOC by comparing patients osteoma affected skin area to their unaffected healthy skin area, as well as to skin from controls. This comparison was made by using osteogenic differentiation studies in cell cultures and by gene expression experiments. Both patient and control dermal fibroblast-like cells were able to differentiate into osteoblast-like matrix mineralizing cells. The differentiation seems to diminish with bone morphogenetic protein (BMP) 4 and 2/7 exposures and seems to correlate with proportion of stem cell associated cell surface marker CD105 positive cells. Microarray analysis revealed altered gene expression patterns between skin samples of patients and controls, as well as between samples taken from different skin areas. BMP receptor II and G-protein -stimulatory subunit genes were among downregulated and -catenin among upregulated genes in patient compared to control samples. Genes for homeobox proteins were among downregulated and gene for secreted frizzled related protein 2 among upregulated genes when compared patients osteoma area to their unaffected area. Differences in unaffected skin area in patients and controls suggest that the nature of MMOC may be more systemic than previously thought. Detected differences in separate skin areas may, in turn, provide new information for understanding the localized characteristics of MMOC. BMPs inhibitory effect to osteogenic differentiation of human dermal fibroblast-like cells may provide a new perspective to the clinical use of BMPs.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact