Cadmium sulfide quantum dots (CdS QDs) are widely used in novel equipment. The relevance of the research lies in the need to develop risk assessments for nanomaterials, using as basis a model plant species.
Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots.
Specimen part, Treatment
View SamplesMaize transgenic event MON810, grown and commercialised worldwide, is the only cultivated GM event in EU. Maize MON810, variety DKC6575, and the corresponding near-isogenic Tietar were studied in different growing conditions, to assess their behaviour in response to drought. Profiling gene expression in water deficit regimes and in generalised water stress showed an up-regulation of different stress- responsive genes. A greater number of differentially expressed genes was observed in Tietar rather than in DKC6575, with genes belonging to transcription factor families and genes encoding HSPs, LEAs and detoxification enzymes. Since these genes have been from literature, indicated as typical of stress responses, their activation in Tietar rather than in DKC6575 may be reminiscent of a more efficient water stress response. DKC6575 was also analysed for the expression of the transgene CryIAb (encoding for the delta-endotoxin insecticidal protein) in water limiting conditions. In all the experiments the CryIAb transcript was not influenced by water stress, but expressed at a constant level. This suggests that though a different pattern of sensitivity to stress, the transgenic variety maintains the same expression level for the transgene.
Comparison of drought stress response and gene expression between a GM maize variety and a near-isogenic non-GM variety.
Specimen part
View SamplesTranscriptomics analyses in these Zn-deficient rats revealed the molecular basis of ESCC abrogation by miR-31 knockout: Egln3, a negative regulator of NF-FB, was shown to be a direct miR-31 target; miR-31 inhibition/deletion resulted in suppression of miR-31-associated-EGLN3-NF-KB controlled inflammatory pathways.
Abrogation of esophageal carcinoma development in miR-31 knockout rats.
Treatment
View SamplesMyeloma bone disease is characterized by tremendous bone destruction with suppressed bone formation. IL-3 is a multifunctional cytokine that increases myeloma cell growth and osteoclast proliferation while inhibiting osteoblast differentiation. While IL-3 appears to be an attractive therapeutic target for myeloma, attempts at targeting IL-3 have been unsuccessful due to IL-3s effects on normal hematopoiesis. Thus identification of IL-3s downstream effects in MMBD is important for effective targeting of this cytokine in MM. Here we demonstrated that treatment of myeloma patient CD14+ bone marrow monocyte / macrophages with IL-3 induces high levels of Activin A (ActA), a pluripotent TGF- superfamily member that, like IL-3, modulates MMBD by enhancing osteoclastogenesis and inhibiting osteoblasts. We show that IL-3 induced osteoclastogenesis is mediated by ActA and is RANKL independent. Additionally, IL-3 induced ActA secretion is greatest early in osteoclastogenesis and ActA acts early in osteoclastogenesis. Therefore we suggest that therapies targeting ActA production should block IL-3s effects in myeloma bone disease.
Bone marrow monocyte-/macrophage-derived activin A mediates the osteoclastogenic effect of IL-3 in multiple myeloma.
Specimen part, Disease, Disease stage, Treatment
View SamplesConsider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference, this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This study develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large-scale serially sampled respiratory virus challenge study, we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample.
An individualized predictor of health and disease using paired reference and target samples.
Specimen part, Subject, Time
View SamplesAfrican-American individuals of the GENOA cohort
Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA.
Sex, Age, Specimen part
View SamplesThe NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.
The NIH Roadmap Epigenomics Mapping Consortium.
Sex, Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesA cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
Subject
View SamplesWith aging, significant changes in circadian rhythms occur, including a shift in phase toward a morning chronotype and a loss of rhythmicity in circulating hormones. However, the effects of aging on molecular rhythms in the human brain have remained elusive. Here we employed a previously-described time-of-death analyses to identify transcripts throughout the genome that have a significant circadian rhythm in expression in the human prefrontal cortex (Brodmanns areas (BA) 11 and 47). Expression levels were determined by microarray analysis in 146 individuals. Rhythmicity in expression was found in ~10% of detected transcripts (p<0.05). Using a meta-analysis across the two brain areas, we identified a core set of 235 genes (q<0.05) with significant circadian rhythms of expression. These 235 genes showed 92% concordance in the phase of expression between the two areas. In addition to the canonical core circadian genes, a number of other genes were found to exhibit rhythmic expression in the brain. Notably, we identified more than one thousand genes (1186 in BA11; 1591 in BA47) that exhibited age-dependent rhythmicity or alterations in rhythmicity patterns with aging. Interestingly, a set of transcripts gained rhythmicity in older individuals, which may represent a compensatory mechanism due to a loss of canonical clock function. Thus, we confirm that rhythmic gene expression can be reliably measured in human brain and identified for the first time significant changes in molecular rhythms with aging that may contribute to altered cognition, sleep and mood in later life.
Effects of aging on circadian patterns of gene expression in the human prefrontal cortex.
Sex, Age, Specimen part, Race
View Samples