Despite even large phenotypic differences among vertebrate groups, dentitions and jaws fit and function together, yet the genetic processes that orchestrate cranial and dental morphogenesis remain poorly understood. In the p63-/- mouse mutant, teeth but not jaws fail to form. This edentate mouse is a model with which to tease out genes important for odontogenesis but not jaw morphogenesis, and which may thus allow dentitions to change during development and evolution without necessarily affecting the jaw skeleton. With the working hypothesis that tooth and jaw development are autonomously controlled by discreet gene regulatory networks, we probed for genes crucial for tooth development only. Using gene expression microarray assays validated by quantitative reverse-transcription PCR, we contrasted expression in mandibular prominences at embryonic days (E) 10-13 among mice with normal lower jaw development and either normal (p63+/-, p63+/+) or arrested (p63-/-) tooth development. We predicted that expression of a suite of genes specific to odontogenesis would differ in the edentate mice. The p63-/- mice showed significantly different expression (fold change 1.5, -1.5; p0.05) of several genes, some of which are already reported to help regulate odontogenesis (e.g., p63, Osr2, Cldn3/4) and/or to be targets of p63 (e.g., Jag1/2, Fgfr2), others of which have no previously reported roles in odontogenesis or the p63 pathway (e.g, Fermt1, Cbln1, Pltp, Cxcl14, Krt8, and additional keratin and claudin family members). As expected, from E10-E13 few genes known to regulate mandible morphogenesis differed in expression between mouse strains. Thus this study links for the first time several genes to odontogenesis and/or the p63 signaling network. We propose that these genes act in a novel odontogenic network that is exclusive of lower jaw morphogenesis, and posit that this network evolved in oral, not pharyngeal, teeth.
Detangling the evolutionary developmental integration of dentate jaws: evidence that a p63 gene network regulates odontogenesis exclusive of mandible morphogenesis.
Specimen part
View SamplesWe found that amino acid transporter LHT1 was required for negatively regulating plant defence responses in addition to its physiological role in development and growth. In order to identify which defense pathways were involved in this process, we compared the expression profiles between wild type and lht1 mutant leaves without or with infection by Pseudomonas syringae pv. tomato DC3000 (Pst). In the lht1 mutant, except the changes in nitrogen metabolism-, cellular redox-, and photorespiration-associated gene expressions, the most drastic upregulations were found in the salicylic acid pathway-associated defense genes.
Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis.
Specimen part, Treatment
View SamplesSco1 is a gene required for cytochrome c oxidase biogenesis and the regulation of copper homeostasis. We characterized the transcriptional changes that occur as a result of liver-specific deletion of Sco1 in mice at 27 days of age
The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis.
Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesThe unfolded protein response (UPR) is activated in response to hypoxia-induced stress such as in the tumor microenvironment. This study examined the role of CREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the UPR, in breast cancer development and metastasis. Initial experiments identified the loss of CREB3L1 expression in metastatic breast cancer cell lines compared to low- or non-metastatic cell lines. When metastatic cells were transfected with CREB3L1 they demonstrated reduced invasion and migration in vitro, as well as a significantly decreased ability to survive under non-adherent or hypoxic conditions. Interestingly, in an in vivo rat mammary tumor model, CREB3L1 expressing cells not only failed to form metastases compared to CREB3L1 null cells but regression of the primary tumors was seen in 70% of the animals as a result of impaired angiogenesis. Microarray and ChIP on Chip analyses identified changes in the expression of many genes involved in cancer development and metastasis, including a decrease in those involved in angiogenesis. These data suggest that CREB3L1 plays an important role in suppressing tumorgenesis and loss of expression is required for the development of a metastatic phenotype.
CREB3L1 is a metastasis suppressor that represses expression of genes regulating metastasis, invasion, and angiogenesis.
Specimen part, Cell line
View SamplesConsider the problem of designing a panel of complex biomarkers to predict a patient's health or disease state when one can pair his or her current test sample, called a target sample, with the patient's previously acquired healthy sample, called a reference sample. As contrasted to a population averaged reference, this reference sample is individualized. Automated predictor algorithms that compare and contrast the paired samples to each other could result in a new generation of test panels that compare to a person's healthy reference to enhance predictive accuracy. This study develops such an individualized predictor and illustrates the added value of including the healthy reference for design of predictive gene expression panels. The objective is to predict each subject's state of infection, e.g., neither exposed nor infected, exposed but not infected, pre-acute phase of infection, acute phase of infection, post-acute phase of infection. Using gene microarray data collected in a large-scale serially sampled respiratory virus challenge study, we quantify the diagnostic advantage of pairing a person's baseline reference with his or her target sample.
An individualized predictor of health and disease using paired reference and target samples.
Specimen part, Subject, Time
View SamplesAfrican-American individuals of the GENOA cohort
Genetic Architecture of Gene Expression in European and African Americans: An eQTL Mapping Study in GENOA.
Sex, Age, Specimen part
View SamplesThe NIH Roadmap Epigenomics Mapping Consortium aims to produce a public resource of epigenomic maps for stem cells and primary ex vivo tissues selected to represent the normal counterparts of tissues and organ systems frequently involved in human disease.
The NIH Roadmap Epigenomics Mapping Consortium.
Sex, Specimen part, Disease, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility.
Sex, Specimen part
View SamplesA cardinal symptom of Major Depressive Disorder (MDD) is the disruption of circadian patterns. Yet, to date, there is no direct evidence of circadian clock dysregulation in the brains of MDD patients. Circadian rhythmicity of gene expression has been observed in animals and peripheral human tissues, but its presence and variability in the human brain was difficult to characterize. Here we applied time-of-death analysis to gene expression data from high-quality postmortem brains, examining 24-hour cyclic patterns in six cortical and limbic regions of 55 subjects with no history of psychiatric or neurological illnesses ('Controls') and 34 MDD patients. Our dataset covered ~12,000 transcripts in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (AnCg), hippocampus (HC), amygdala (AMY), nucleus accumbens (NAcc) and cerebellum (CB). Several hundred transcripts in each region showed 24-hour cyclic patterns in Controls, and >100 transcripts exhibited consistent rhythmicity and phase-synchrony across regions. Among the top ranked rhythmic genes were the canonical clock genes BMAL1(ARNTL), PER1-2-3, NR1D1(REV-ERB), DBP, BHLHE40(DEC1), and BHLHE41(DEC2). The phasing of known circadian genes was consistent with data derived from other diurnal mammals. Cyclic patterns were much weaker in MDD brains, due to shifted peak timing and potentially disrupted phase relationships between individual circadian genes. This is the first transcriptome-wide analysis of cyclic patterns in the human brain and demonstrates a rhythmic rise and fall of gene expression in regions outside of the suprachiasmatic nucleus in control subjects. The description of its breakdown in MDD suggest novel molecular targets for treatment of mood disorders.
Circadian patterns of gene expression in the human brain and disruption in major depressive disorder.
Subject
View Samples