Genome wide mRNA and miRNA profiling was performed in SH-SY5Y cells stably overexpressing wild type or mutant MIR204 or MIR618. Mutants came from a large scale genetic screening of brain expressed miRNA genes in patients with schizophrenia or idiopathic generalized epilepsy and in control individuals. Based on enrichment of the variants with the schizophrenic or epileptic phenotype and based on impact prediction, two variants, one near MIR204 (rs7861254) and one in MIR618 (rs2682818) were selected for functional validation. Genome wide profiling of mRNA (micro-array) and mature miRNAs (small RNA sequencing, submitted to SRA) was performed in the created stable cells to assess the effect of the variants and to investigate the function of these miRNA genes.
Schizophrenia-Associated MIR204 Regulates Noncoding RNAs and Affects Neurotransmitter and Ion Channel Gene Sets.
Cell line
View SamplesGlucocorticoids (GCs) are commonly used to treat patients suffering from lymphoid malignancies i.e. leukemia and multiple myeloma. Although GCs are known to be strong inducers of apoptosis in lymphoid cells, the molecular determinants of GC therapy resistance are poorly understood. Although GC treatment triggers important changes in gene expression, few studies have addressed the regulatory role of small regulatory microRNAs (miRNAs) in GC therapy response. Only recently, aberrant microRNA expression has been linked to the development of haematological malignancies and microRNAs have become master regulators of drug resistance. We identified GC inducible mRNA and microRNA transcription profiles in GC sensitive MM1S as compared to GC resistant MM1R cells. Transcriptome analysis revealed that GCs regulate multiple genes involved in cell cycle control, cell organization and cell death in MM1S, which remain unaffected in MM1R cells. Correspondingly, GCs selectively trigger cell death in MM1S but not in MM1R. Out of 32 microRNAs responsive to GC in MM1S cells but not in MM1R cells, mir-150 was identified as the most persistent GC responsive microRNA. Furthermore, Ingenuity Pathways Analysis (IPA) revealed that ectopic transfection of a synthetic mir-150 mimics GC therapy response in MM1S cells, associated with selective changes in mRNA levels of typical GR transactivated and transrepressed target genes. Although mir-150 largely mirrors GC responsive changes in gene expression of the transcription factor Myb, GR chaperone FKBP5, cell cycle modulator proteins (IL23A, SKP2, CDKN1A), chemokine signaling proteins (CXCR4, CX3CR1, CCL3) and mTOR/UPR stress related proteins (DDIT4, TXNIP), we also observed mir-150 selective effects on transcription factors (NR3C2 (MR), Myb, Fos, Jun, C/EBP-beta, IRF4, NFE2L1, ATF3, ATF4,), chaperone molecules HSPA8, HSP90AB1), the sodium channel SCNN1G and UPR stress proteins (TRIB3, DDIT3). Remarkably, mir-150 overexpression was not able to overcome GC therapy resistance, since we could not detect GC like effects of mir-150 in GR (NR3C1) deficient MM1R cells. Altogether GC-inducible mir-150 adds a novel complex layer of regulation for fine tuning GC specific therapeutic responses in multiple myeloma.
Ectopic microRNA-150-5p transcription sensitizes glucocorticoid therapy response in MM1S multiple myeloma cells but fails to overcome hormone therapy resistance in MM1R cells.
Cell line, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The deafness gene DFNA5 induces programmed cell death through mitochondria and MAPK-related pathways.
Specimen part, Cell line
View SamplesThe function of DFNA5 remained unknown for a long time, but previous functional studies by Op de Beeck et al. (2011) revealed that DFNA5 induces a growth defect in mutDFNA5- transfected HEK293T cells, as well as other cells, leading to PCD (Op de Beeck et al., 2011). The cell death-inducing capacity of DFNA5 was not only restricted to human cell lines, but was also observed in the yeast model Saccharomyces cerevisiae (Van Rossom et al., 2012). This inspired us to perform a transcriptomic analysis using two different model organisms (mammalian, HEK293T, and yeast, S.cerevisiae) to further elucidate the mechanisms related to DFNA5.
No associated publication
Specimen part, Cell line
View SamplesA key requisite for the success of a dendritic cell (DC)-based vaccine in treating malignancies is the capacity of the DCs to attract immune effector cells for further interaction and activation, considering crosstalk with DCs is partially regulated by cell-contact-dependent mechanisms. Although critical for therapeutic efficacy, immune cell recruitment is a largely overlooked aspect regarding optimization of DC therapy. In this paper we examine if the so-called interleukin (IL)-15 DC vaccine provides a favorable chemokine milieu for recruiting T cells, natural killer (NK) cells and gamma delta () T cells, in comparison with the IL-4 DCs used routinely for clinical studies, as well as the underlying mechanisms of immune cell attraction by IL-15 DCs. Chemokine signaling is studied both at the RNA level, using microarray data of mature DCs, and functional level, by means of a transwell chemotaxis assay. Important to note, the classic IL-4 DC vaccine falls short to attract the required immune effector lymphocytes, whereas the IL-15 DCs provide a favorable chemokine milieu for recruiting all cytolytic effector cells. The elevated secretion of the chemokine (C-C motif) ligand 4 (CCL4), also known as macrophage inflammatory protein-1 (MIP-1), by IL-15 DCs underlies the enhanced migratory responsiveness of T cells, NK cells and T cells. Namely, neutralizing its receptor CCR5 resulted in a significant drop in migration of the aforementioned effector cells towards IL-15 DCs. These findings should be kept in mind in the design of future DC-based cancer vaccines.
Desirable cytolytic immune effector cell recruitment by interleukin-15 dendritic cells.
Specimen part, Subject
View SamplesEndocardial (EE) and Aortic (AE) endothelial cells were isolated from the same two rats, pooled (EE and AE kept separately) and cultured for 2 passages. Culture conditions and confluence of EE and AE cell cultures were kept as identical as possible. RNA was isolated and the expression profile of both endothelial cell types was compared using the Affymetrix rat genome U34A array.
Molecular diversity of cardiac endothelial cells in vitro and in vivo.
No sample metadata fields
View SamplesThe final size of plant organs such as leaves is tightly controlled by environmental and genetic factors that must spatially and temporally coordinate cell expansion and cell cycle activity. However this regulation of organ growth is still poorly understood. The aim of this study is to gain more insight in the genetic control of leaf size in Arabidopsis by performing a comparative analysis of transgenic lines that produce larger leaves under standardized environmental conditions. To this end, we selected five genes, belonging to different functional classes, that all positively affect leaf size when over-expressed: AVP1, GRF5, JAW, BRI1 and GA20OX1. We show that the increase in leaf area in these lines depends on leaf position and growth conditions and that all five lines affect leaf size differently. However, in all cases an increase in cell number is, entirely or predominantly, responsible for the leaf size enlargement. By means of analyses of hormone levels, transcriptome and metabolome we provide deeper insight in the molecular basis of the growth phenotype for the individual lines. A comparative analysis between them indicates that enhanced organ growth is governed by different, seemingly independent pathways. The analysis of transgenic lines simultaneously over-expressing two growth-enhancing genes further supports the concept that multiple pathways independently converge on organ size control in Arabidopsis.
Increased leaf size: different means to an end.
Specimen part
View SamplesThe goal of this study is to identify co-expressed genes downstream of Atonal and Senseless. These gene lists are used as candidate target genes (technically: as foreground sets) in computational predictions of cis-regulatory elements using the cisTargetX method (http://med.kuleuven.be/cme-mg/lng/cisTargetX). Together, the gene expression results and cis-regulatory predictions, yield a gene regulatory network underlying the early events in retinal differentiation. Predicted cis-regulatory interactions have been validated extensively in vivo using enhancer reporter assays and genetic perturbations.
No associated publication
Specimen part
View SamplesThe number of cells in an organ is a major factor for the determination of organ size. However, genetic basis of cell number determination is not well understood. Three grandifolia-D (gra-D) mutants of Arabidopsis thaliana developed huge leaves containing two- to three-fold increased number of cells of the wild type. Tiling array and microarray analysis of gra-D mutants suggested that genes found in a lower part of chromosome 4 were upregulated, suggesting the occurrence of segmental chromosomal duplications in the gra-D mutants. These region contain positive regulators of cell proliferation such as AINTEGUMENTA (ANT) and cyclin genes such as CYCD3;1.
Impact of segmental chromosomal duplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana.
Specimen part
View SamplesThe number of cells in an organ is a major factor for the determination of organ size. However, genetic basis of cell number determination is not well understood. Three grandifolia-D (gra-D) mutants of Arabidopsis thaliana developed huge leaves containing two- to three-fold increased number of cells of the wild type. Tiling array and microarray analysis of gra-D mutants suggested that genes found in a lower part of chromosome 4 were upregulated, suggesting the occurrence of segmental chromosomal duplications in the gra-D mutants. These region contain positive regulators of cell proliferation such as AINTEGUMENTA (ANT) and cyclin genes such as CYCD3;1.
Impact of segmental chromosomal duplications on leaf size in the grandifolia-D mutants of Arabidopsis thaliana.
Specimen part
View Samples