Transcriptome profiling of spleens from the triple peptide-immunized cohort showed substantial HD-specific differences including differential activation of genes associated with innate immune responses, absence of negative feedback control of gene expr
No associated publication
Specimen part
View SamplesGene expression was compared for wild type yeast (BY4741) and yeast lacking Gal11/Med15 and Med3, or from a gal11-myc med3 strain. The gal11-myc allele shows a partial loss of function when combined with med3. Expression was analyzed for yeast grown in YPD as well as in CSM.
Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast.
No sample metadata fields
View SamplesSignal intensity data for rpd3 delete, H3delta(1-28), H3(K4,9,14,18,23,27Q), H4delta(2-26), H4(K5,8,12,16Q), rpd3 delete H3delta(1-28), and rpd3 delete H4(K5,8,12,16Q) yeast grown in rich (YPD) media
Genome-wide analysis of the relationship between transcriptional regulation by Rpd3p and the histone H3 and H4 amino termini in budding yeast.
No sample metadata fields
View SamplesGenome-wide studies have identified abundant small, non-coding RNAs including snRNAs, snoRNAs, cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs) that are transcribed by RNA polymerase II (pol II) and terminated by a Nrd1-dependent pathway. Here, we show that the prolyl isomerase, Ess1, is required for Nrd1-dependent termination of ncRNAs. Ess1 binds the carboxy terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of ~10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, SUTs and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase, and we provide evidence for a competition between Nrd1 and Pcf11 for CTD-binding that is regulated by Ess1-dependent isomerization. This is the first example of a prolyl isomerase required for interpreting the CTD code.
The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway.
No sample metadata fields
View SamplesYeast lacking the H3 or H4 amino termini, and corresponding wild type strains, were grown in synthetic media. These conditions induce Gcn4-activated transcription.
Contribution of the histone H3 and H4 amino termini to Gcn4p- and Gcn5p-mediated transcription in yeast.
No sample metadata fields
View SamplesAbf1 and Rap1 are General Regulatory Factors that contribute to transcriptional activation of a large number of genes, as well as to replication, silencing, and telomere structure in yeast. In spite of their widespread roles in transcription, the scope of their functional targets genome-wide has not been previously determined. We have used microarrays to examine the contribution of these essential GRFs to transcription genome-wide, by using ts mutants that dissociate from their binding sites at 37 C. We combined this data with published ChIP-chip studies and motif analysis to identify probable direct targets for Abf1 and Rap1. We also identified a substantial number of genes likely to bind Rap1 or Abf1, but not affected by loss of GRF binding. Interestingly, the results strongly suggest that Rap1 can contribute to gene activation from farther upstream than can Abf1. Also, consistent with previous work, more genes that bind Abf1 are unaffected by loss of binding than those that bind Rap1. Finally, we showed for several such genes that the Abf1 C-terminal region, which contains the putative activation domain, is not needed to confer this peculiar "memory effect" that allows continued transcription after loss of Abf1 binding.
Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae.
No sample metadata fields
View SamplesIn male Cyp2g1-null mice, the lateral nasal gland, one of the largest anterior glands in the nasal cavity, was found to be protected from acetaminophen toxicity. The goal of this study was to identify the genes that are involved in the mechanisms, especially those genes functional in drug metabolism, clearance and post-activation events.
A novel defensive mechanism against acetaminophen toxicity in the mouse lateral nasal gland: role of CYP2A5-mediated regulation of testosterone homeostasis and salivary androgen-binding protein expression.
Sex, Specimen part
View SamplesNADPH-cytochrome P450 reductase (CPR) is important for the functions of many enzymes, such as microsomal cytochrome P450 (P450) monooxygenases and heme oxygenases. Two mouse models with deficient CPR expression in adults were recently generated in this laboratory: liver-Cpr-null (with liver-specific Cpr deletion) (Gu et al., J. Biol. Chem., 278, 2589525901, 2003) and Cpr-low (with reduced CPR expression in all organs examined) (Wu et al. J. Pharmacol. Expt. Ther. 312, 35-43, 2005). The phenotypes included a reduced serum cholesterol level and an induction of hepatic P450 in both models, and hepatomegaly and fatty liver in the liver-Cpr-null mouse alone. Our aim was to identify hepatic gene-expression changes related to these phenotypes. Cpr-lox mice, which have normal CPR expression (Wu et al., Genesis, 36, 177-181, 2003.), were used as the control in microarray analysis. A detailed analysis of the gene-expression changes in lipid metabolism and transport pathways revealed potential mechanisms, such as an increased activation of constitutive androstane receptor (CAR) and a decreased activation of peroxisomal proliferators activated receptor alpha (PPAR-gamma) by precursors of cholesterol biosynthesis, that underlie common changes (e.g., induction of multiple P450s and inhibition of genes for fatty acids metabolism) in response to CPR-loss in the two mouse models. Moreover, we also uncovered model-specific gene-expression changes, such as the induction of a lipid translocase (CD36 antigen) and the suppression of carnitine O-palmitoyltransferase 1 (CPT1a) and acyl-CoA synthetase long-chain family member 1 (Acsl1), that are potentially responsible for the severe hepatic lipidosis observed in liver-Cpr-null, but not Cpr-low mice.
Hepatic gene expression changes in mouse models with liver-specific deletion or global suppression of the NADPH-cytochrome P450 reductase gene. Mechanistic implications for the regulation of microsomal cytochrome P450 and the fatty liver phenotype.
No sample metadata fields
View SamplesWe compared gene expression profiles between asymptomatic and symptomatic atherosclerotic plaques from the same patient. This was accomplished by analyzing carotid plaques from four patients with bilateral high-grade carotid artery stenoses one being symptomatic (TIA or stroke) and the other asymptomatic.
Microarray analysis reveals overexpression of CD163 and HO-1 in symptomatic carotid plaques.
Sex, Age, Specimen part, Disease, Disease stage, Subject, Time
View SamplesCBX7-RIP-Seq data for HEK293T cells
No associated publication
Sex, Age, Specimen part, Cell line
View Samples