refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 12265 results
Sort by

Filters

Technology

Platform

accession-icon GSE74681
Environmental enteric dysfunction includes a broad spectrum of inflammatory responses and epithelial repair processes.
  • organism-icon Homo sapiens
  • sample-icon 263 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Environmental enteric dysfunction (EED), a chronic diffuse inflammation of the small intestine, is associated with stunting in children in the developing world. The pathobiology of EED is poorly understood because of the lack of a method to elucidate the host response. This study utilized a novel microarray method to interrogate the host transcriptome in feces in Malawian children with EED. Our data showed that the children studied had a range of %L values, consistent a spectrum of EED from normal to severe. We identified 12 transcripts associated with the severity of EED, including chemokines that stimulate T-cell proliferation, Fc fragments of multiple immunoglobulin families, interferon-induced proteins, activators of neutrophils and B-cells, and mediators that dampen cellular responses to hormones. EED associated transcripts mapped to pathways related to cell adhesion, and responses to a broad spectrum of viral, bacterial and parasitic microbes and enhanced phagocytosis. Several mucins, regulatory factors and protein kinases associated with the maintenance of the mucous layer were expressed less in children with EED than normal children. In conclusion, EED represents the focused activation of elements of the immune system and is associated with widespread intestinal barrier disruption. The differentially expressed transcripts may be explored as potential biomarkers.

Publication Title

Environmental Enteric Dysfunction Includes a Broad Spectrum of Inflammatory Responses and Epithelial Repair Processes.

Sample Metadata Fields

Sex, Disease, Disease stage

View Samples
accession-icon GSE41168
Resveratrol supplementation does not improve metabolic function in non-obese women with normal glucose tolerance
  • organism-icon Homo sapiens
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Resveratrol has been reported to improve metabolic function in metabolically-abnormal rodents and humans, but has not been studied in non-obese people with normal glucose tolerance. We conducted a randomized, double-blind, placebo-controlled trial to evaluate the metabolic effects of 12 weeks of resveratrol supplementation (75 mg/day) in non-obese, postmenopausal women with normal glucose tolerance. Although resveratrol supplementation was well-tolerated and increased plasma resveratrol concentration without adverse effects, it did not change body composition, resting metabolic rate, plasma lipids, or inflammatory markers. A two-stage hyperinsulinemic-euglycemic clamp procedure, in conjunction with stable isotopically-labeled tracer infusions, demonstrated that resveratrol did not increase liver, skeletal muscle, or adipose tissue insulin sensitivity. Consistent with the absence of in vivo metabolic effects, resveratrol did not affect its putative molecular targets, including AMPK, Sirt1, Nampt, and Pgc-1, in either skeletal muscle or adipose tissue. These findings demonstrate that resveratrol supplementation does not have metabolic effects in non-obese women.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE66649
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Agilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE118754
Transcriptome Expression Data from Resected Operative Ileal Mucosa Specimens in a cohort of patients with Crohns Disease
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Affymetrix human whole transcriptome array (HTA 2.0) completed on patients with Crohn's disease undergoing their first ileocolic resection

Publication Title

Predicting Risk of Postoperative Disease Recurrence in Crohn's Disease: Patients With Indolent Crohn's Disease Have Distinct Whole Transcriptome Profiles at the Time of First Surgery.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30626
Candidate pathways for promoting differentiation and quiescence of oligodendrocyte progenitor-like cells in glioblastoma
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mature CNS contains PDGFRA+ oligodendrocyte progenitor cells (OPC) which may remain quiescent, proliferate, or differentiate into oligodendrocytes. In human gliomas, rapidly proliferating Olig2+ cells resembling OPCs are frequently observed. We sought to identify, in vivo, candidate pathways uniquely required for OPC differentiation or quiescence. Using the bacTRAP methodology, we generated and analyzed mouse lines for translational profiling the major cells types (including OPCs), in the normal mouse brain. We then profiled oligodendoglial (Olig2+) cells from a mouse model of Pdgf-driven glioma. This analysis confirmed that Olig2+ tumor cells are most similar to OPCs, yet, it identified differences in key progenitor genes - candidates for promotion of differentiation or quiescence.

Publication Title

Candidate pathways for promoting differentiation or quiescence of oligodendrocyte progenitor-like cells in glioma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100005
Molecular and functional sex differences of noradrenergic neurons in the mouse locus coeruleus
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip, Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Molecular and Functional Sex Differences of Noradrenergic Neurons in the Mouse Locus Coeruleus.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE57589
Xenomicrobiota transplant experiment
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gut microbes elicit specific changes in gene expression in the colon of mice. We colonized germ-free mice with microbial communities from the guts of humans, zebrafish and termites, human skin and tongue, soil and estuarine microbial mats.

Publication Title

Bacteria from diverse habitats colonize and compete in the mouse gut.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE7013
Gnotobiotic mouse ileum; Listeria infection series
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Ileal profiles from gnotobiotic mice mono-associated with Listeria species or B. thetaiotaomicron. Samples were derived from 72h colonizations of Fabpi-hEcad transgenic B6 mice fed a standard-chow polysaccharide rich (PR) diet.

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE66628
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (Affymetrix_Gene1.0) (exon analysis)
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconAgilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE66648
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology (Affymetrix_HTA2.0)
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconAgilent-014850 Whole Human Genome Microarray 4x44K G4112F (Feature Number version), Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations.

Publication Title

Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.

Sample Metadata Fields

Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact