Idiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP) are the 2 most common forms of idiopathic interstitial pneumonia. Response to therapy and prognosis are remarkably different. The clinical-radiographic distinction between IPF and NSIP may be challenging. We sought to investigate the gene expression profile of IPF vs. NSIP
Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis.
Specimen part, Disease, Disease stage
View SamplesThis SuperSeries is composed of the SubSeries listed below.
An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences.
Specimen part
View SamplesPulmonary arterial hypertension (PAH) is the best characterized and most studied type of pulmonary hypertension, classified as Group I according to the international guidelines, and hemodinamically defined as pre-capillary pulmonary hypertension. Our analysis was focused on the role of the osteopontin gene in the transcriptional profile of PAH.
No associated publication
Specimen part, Disease, Disease stage
View SamplesUpon G1-S transition, cyclin-dependent kinases (CDKs) phosphorylate the retinoblastoma tumor suppressor protein (pRB) to release E2F transcription factors, which activate transcriptional programs, required for S-phase entry. Beyond the G1-S transition, pRB activity remains poorly understood. Our lab has discovered that pRB retains exclusive binding to E2F1 through an alternate E2F1-specific binding site at the pRB c-terminus independent of CDK phosphorylation. We have developed a gene-targeted mouse model that is defective for the E2F1-specific interaction. We are exploring the function of this complex through genome-wide binding and expression profiling. Overall, this work suggests an alternate pRB-E2F1 complex persists independent of CDK phosphorylation to establish regions of constitutive heterochromatin
An RB-EZH2 Complex Mediates Silencing of Repetitive DNA Sequences.
Specimen part
View SamplesThe retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1G) are defective in regulating E2F target genes. Surprisingly, cell cycle regulation in Rb1G/G MEFs strongly resembles that of wild type. In a serum deprivation induced cell cycle exit, Rb1G/G MEFs display a similar magnitude of E2F target gene derepression as Rb1-/-, even though Rb1G/G cells exit the cell cycle normally. Interestingly, cell cycle arrest in Rb1G/G MEFs is responsive to p16 expression, indicating that the G-pRB protein can be activated in G1 to arrest proliferation through non-E2F mechanisms. Some Rb1G/G mice die neonatally with a muscle degeneration phenotype, while the others live a normal lifespan with no evidence of spontaneous tumor formation. Histological analysis reveals discrete examples of hyperplasia in the mammary epithelium, but most tissues appear normal while being accompanied by derepression of pRB regulated E2F targets. This suggests that non-E2F, pRB dependent pathways may have a more relevant role in proliferative control than previously identified.
A retinoblastoma allele that is mutated at its common E2F interaction site inhibits cell proliferation in gene-targeted mice.
Specimen part
View SamplesAnalysis of kidneys from 12 week BPH/2J hypertensive and age matched normotensive BPN/3J controls - males and females. The results provide insights into the genes that are involved in hypertension in both males and females, as well as highlight mechanisms that underlye sex differences in hypertension.
Identification of genes with altered expression in male and female Schlager hypertensive mice.
Sex, Age, Specimen part, Disease, Disease stage
View SamplesGenome-wide transcriptome analysis was carried out in root tissue of Arabidopsis seedlings treated with gold (Au) as Chloroauric acid (HAuCl4). This study demonstrated remarkable changes in root transcriptome within the 12 h exposure. Most of the genes differentially expressed were related to glutathione binding, methylations, secondary metabolism, sugar metabolism, ABA, ethylene, auxin related signalling, transport and signal-transduction pathways.
Genome wide transcriptome analysis reveals ABA mediated response in Arabidopsis during gold (AuCl(-) 4) treatment.
Specimen part, Treatment
View SamplesThe study was performed using primary rat hepatocyte in culture from 4 adult male Sprague-Dawley rats to investigate the changes in gene expression under low dose (4M) and short exposure (3hrs) of cadmium chloride. By comparing the gene expression profiles of control and cadmium-treated cells, the most dramatic and significant changes were for those genes associated with transcriptional regulation, antioxidant response and control of protein integrity. Changes in other genes involved in cellular physiological responses such as inflammation, growth and apoptosis were also observed. Results were further confirmed by quantitative real time polymerase chain reaction (qRT-PCR).
Early sensing and gene expression profiling under a low dose of cadmium exposure.
Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists.
Specimen part, Disease, Treatment, Subject
View SamplesAge-related alterations in immunity have been linked to increased incidence of infections and decreased responses to vaccines in the aging population. Human peripheral blood monocytes are known to promote antigen presentation and antiviral activities; however, the impact of aging on monocyte functions remains an open question. We present an in-depth global analysis examining the impact of aging on classical (CD14+CD16-), intermediate (CD14+CD16+), and non-classical (CD14dimCD16+) monocytes. Monocytes sorted from non-frail healthy adults (18-40 yrs) and OLD ( 65 yrs) individuals were analyzed after stimulation with TLR4, TLR7/8, and RIG-I agonists. Our data showed under non-stimulated conditions, monocyte subsets did not reveal significant age-related alternations; however, agonist stimulated-monocytes from adults and OLD subjects did show differences at the transcriptional and functional levels. These alternations in many immune-related transcripts and biological processes resulted in reduced production of IFN, IFN, IL-1, CCL20, and CCL8, and higher expression of CX3CR1 in monocytes from OLD subjects. Our findings represent a comprehensive analysis of the influence of human aging on pattern recognition receptors signaling and monocyte functions, and have implications for strategies to enhance the immune response in the context of infection and immunization.
Human Monocyte Subsets Are Transcriptionally and Functionally Altered in Aging in Response to Pattern Recognition Receptor Agonists.
Specimen part, Disease, Treatment, Subject
View Samples