Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked dystrophin (DMD) gene. The absence of dystrophin protein leads to progressive muscle weakness and wasting, disability and death. To establish a tailored large animal model of DMD, we deleted DMD exon 52 in male pig cells by gene targeting and generated offspring by nuclear transfer. DMD pigs exhibit absence of dystrophin in skeletal muscles, increased serum creatine kinase levels, progressive dystrophic changes of skeletal muscles, impaired mobility, muscle weakness, and a maximum life span of 3 months due to respiratory impairment. To address the accelerated development of muscular dystrophy in DMD pigs as compared to human patients, we performed a genome-wide transcriptome study of M. biceps femoris samples from 2-day-old and 3-month-old DMD and age-matched wild-type pigs. The transcriptome changes in 3-month-old DMD pigs were in good accordance with the findings of gene expression profiles in human DMD, reflecting the processes of degeneration, regeneration, inflammation, fibrosis, and impaired metabolic activity. The transcriptome profile of 2-day-old DMD pigs pointed towards increased protein and DNA catabolism, reduced extracellular matrix formation and cell proliferation and showed similarities with transcriptome changes induced by exercise injury in muscle. Our transcriptome studies provide new insights into congenital changes associated with dystrophin deficiency and secondary complications arising during postnatal development. Thus the DMD pig is a useful model to determine the hierarchy of physiological derangements in dystrophin-deficient muscle.
Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.
Age, Specimen part
View SamplesDeficiency of the micronutrient zinc is a widespread condition in agricultural soils, generating a negative impact on crop quality and yield. Nevertheless, there is insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition.
Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply.
Age, Specimen part
View SamplesEctopic expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc (OSKM) can reprogram somatic cells into induced pluripotent stem cells (iPSCs). These iPSCs are highly similar to embryonic stem cells and can be used for regenerative medicine, drug screening and disease modelling. Despite recent advances, reprogramming is a slow and inefficient process. This suggests that there are several safeguarding mechanisms to counteract cell fate conversion. Cellular senescence is one of these barriers, which is mediated through activation of the tumour suppressors p53/p21CIP1, p15INK4b and p16INK4a. In this study, we have screened for shRNAs blunting reprogramming-induced senescence. We integrated single-cell RNA sequencing (scRNA-Seq) with shRNA screening to investigate the mechanism of action of the identified candidates. Overall design: 376 samples: 280 IMR90 cells expressing OSKM and shRNA library derived from the shRNA screen (bypassing senescence), 64 OSKM-expressing IMR90 cells (senescent), 32 IMR90 cells expressing control vector
Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence.
Specimen part, Subject
View SamplesBackground : The aim of this study is to improve our understanding of the mechanisms underlying the role of sepsis in the limb muscles of ICU patients with acute quadriplegic myopathy (AQM) by using a unique porcine ICU model, i.e., 5-day longitudinal experiments where animals are sedated, mechanically ventilated and exposed to factor triggering AQM that is endotoxin-induced sepsis.
Role of sepsis in the development of limb muscle weakness in a porcine intensive care unit model.
Sex, Specimen part, Disease
View SamplesInhibition of the costimulatory CD40-CD40L receptor/ligand dyad drastically reduces atherosclerosis. However, its long-term blockage can result in immune suppression. We recently identified small molecule inhibitors that block the interaction between CD40 and TNF Receptor Associated Factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity. Here we further characterized the working mechanisms of TRAF-STOPs 6877002 and 6860766 in atherogenesis.
Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis.
Specimen part, Treatment
View SamplesBackground: The aim of this study is to improve our understanding of the mechanisms underlying the sparing of masticatory muscles relative to limb muscles in ICU patients with acute quadriplegic myopathy (AQM) by using a unique porcine ICU model, i.e., 5-day longitudinal experiments where animals are sedated, mechanically ventilated and exposed to factors triggering AQM, such as muscle unloading, endotoxin-induced sepsis, and systemic exposure to CS and NMBA.
Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model.
Sex, Specimen part, Disease, Disease stage, Treatment, Time
View SamplesThe present work aimed to identify reference genes for RT-qPCR studies of hypoxia in cervical cancer. From 422 candidate reference genes selected from the literature, we used Illumina array-based expression profiles to identify 182 genes not affected by hypoxia treatment in eight cervical cancer cell lines or correlated with the hypoxia-associated dynamic contrast-enhanced magnetic resonance imaging parameter ABrix in 42 patients. Among these genes, we selected nine candidates (CHCHD1, GNB2L1, IPO8, LASP1, RPL27A, RPS12, SOD1, SRSF9, TMBIM6) that were not associated with tumor volume, stage, lymph node involvement or disease progression in array data of 150 patients, for further testing by RT-qPCR. geNorm and NormFinder analyses of RT-qPCR data of 74 patients identified CHCHD1, SRSF9 and TMBIM6 as the most suitable set of reference genes, with stable expression both overall and across patient subgroups with different hypoxia status (ABrix) and clinical parameters. The suitability of the three candidates as reference genes were validated in studies of the hypoxia-induced genes DDIT3, ERO1A, and STC2. After normalizing with CHCHD1, SRSF9 and TMBIM6, the RT-qPCR data of these genes showed a significant correlation with Illumina expression (P<0.001, n=74) and ABrix (P<0.05, n=32), and the STC2 data were associated with clinical outcome, in accordance with the Illumina data. Thus, CHCHD1, SRSF9 and TMBIM6 seem to be suitable reference genes for studying hypoxia-related gene expression in cervical cancer samples by RT-qPCR. STC2 might be a useful prognostic hypoxia biomarker in cervical cancer that warrants further investigation.
Identification and Validation of Reference Genes for RT-qPCR Studies of Hypoxia in Squamous Cervical Cancer Patients.
Specimen part, Cell line
View SamplesThe aryl hydrocarbon receptor (AHR) functions in higher organisims in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real-time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and an F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5'' flanking regions of some but not all of the gcy, nlp-20 and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes. Overall design: One sample was created from each of the following strains: wild-type N2, ahr-1(ia03) mutant and ahr-1(ju145) mutant. In data analysis, each mutant sample was individually compared to the wild-type sample to find differentially expressed genes.
Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans.
Subject
View SamplesEmerging biomarkers based on medical images and molecular characterization of tumor biopsies open up for combining the two disciplines and exploiting their synergy in treatment planning. We compared pretreatment classification of cervical cancer patients by two previously validated imaging- and gene-based hypoxia biomarkers, evaluated the influence of intratumor heterogeneity, and investigated the benefit of combining them in prediction of treatment failure. The imaging-based biomarker was hypoxic fraction, determined from diagnostic dynamic contrast enhanced (DCE)-MR images. The gene-based biomarker was a hypoxia gene expression signature determined from tumor biopsies. Paired data were available for 118 patients. Intratumor heterogeneity was assessed by variance analysis of MR images and multiple biopsies from the same tumor. The two biomarkers were combined using a dimension-reduction procedure. The biomarkers classified 75% of the tumors with the same hypoxia status. Both intratumor heterogeneity and distribution pattern of hypoxia from imaging were unrelated to inconsistent classification by the two biomarkers, and the hypoxia status of the slice covering the biopsy region was representative of the whole tumor. Hypoxia by genes was independent on tumor cell fraction and showed minor heterogeneity across multiple biopsies in 9 tumors. This suggested that the two biomarkers could contain complementary biological information. Combination of the biomarkers into a composite score led to improved prediction of treatment failure (HR:7.3) compared to imaging (HR:3.8) and genes (HR:3.0) and prognostic impact in multivariate analysis with clinical variables. In conclusion, combining imaging- and gene-based biomarkers enables more precise and informative assessment of hypoxia-related treatment resistance in cervical cancer, independent of intratumor heterogeneity.
Combining imaging- and gene-based hypoxia biomarkers in cervical cancer improves prediction of chemoradiotherapy failure independent of intratumour heterogeneity.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells.
Specimen part
View Samples