Purpose: To define copy number alterations and gene expression signatures underlying pediatric high-grade glioma (HGG). Patients and Methods: We conducted a high-resolution analysis of genomic imbalances in 78 de novo pediatric HGG, including 7 diffuse intrinsic pontine gliomas, and 10 HGG cases arising in children who received cranial irradiation for a previous cancer, using Affymetrix 500K GeneChips. Gene expression signatures for 53 tumors were analyzed with Affymetrix U133v2 arrays. Results were compared with publicly available data from adult tumors. Results: Pediatric and adult glioblastoma were clearly distinguished by frequent gain of chromosome 1q (30% vs 9%) and lower frequency of chromosome 7 gain (13% vs 74%), respectively. The most common focal amplifications also differed, with PDGFRA and EGFR predominant in childhood and adult populations respectively. These common alterations in pediatric HGG were detected at higher frequency in irradiation-induced tumors, suggesting that these are initiating events in childhood gliomagenesis. CDKN2A was the most common tumor suppressor gene targeted by homozygous deletion in pediatric HGG. No IDH1 hotspot mutations were found in pediatric tumors, highlighting molecular differences in pathogenesis between childhood HGG and adult secondary glioblastoma. Integrated copy number and gene expression data indicated that deregulated PDGFRA signaling plays a major role in pediatric HGG. Conclusions: Integrated molecular profiling showed substantial differences in the molecular features underlying pediatric and adult HGG, indicating that findings in adult tumors cannot be simply extrapolated to younger patients. PDGFRA may be a useful target for pediatric HGG including diffuse pontine gliomas.
Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease.
Age, Disease
View SamplesDespite widespread interest in using human stem cells in neurological disease modeling, a suitable model system to study human neuronal connectivity is lacking. Here, we report a protocol for efficient differentiation of hippocampal pyramidal neurons and an in vitro model for hippocampal neuronal connectivity. We developed an embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-based protocol to differentiate human CA3 pyramidal neurons from patterned hippocampal neural progenitor cells (NPCs). This differentiation induces a comprehensive patterning and generates multiple CA3 neuronal subtypes. The differentiated CA3 neurons are functionally active and readily form neuronal connection with dentate granule (DG) neurons in vitro, recapitulating the synaptic connectivity within the hippocampus. When we applied this neuronal co-culture approach to study connectivity in schizophrenia, we found deficits in spontaneous activity in patient iPSC derived DG–CA3 co-culture by multi-electrode array recording. In addition, both multi-electrode array recording and whole cell patch clamp electrophysiology revealed a reduction in spontaneous and evoked neuronal activity in CA3 neurons derived from schizophrenia patients. Altogether these results underscore the relevance of this new model in studying diseases with hippocampal vulnerability. Overall design: 4 technical replicates were used and later pooled together for the bioinformatic analysis.
Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro.
Specimen part, Subject
View SamplesThis data set is intended as a public resource documenting the identity of roughly 10,000 genes that are abundantly expressed in the mouse cochlea. The data have many uses, including for making comparisons with proteomics studies, and for comparisons of expression profiles with other mouse strains and with other species. The CBA/CaJ strain was chosen because of its lack of known vulnerabilities to premature cochlear degeneration or to extreme reactions to cochlear stresses. It may therefore be considered a normal mouse. No experimental manipulations were done on the mice of this study. Contamination of the results by genes expressed in the surrounding petrous bone and from those in blood cells was minimized.
Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology.
No sample metadata fields
View SamplesBrains are sexually dimorphic in adult zebrafish. We dissected brains from young and old, adult zebrafish, from both males and females.
Gene expression changes in aging zebrafish (Danio rerio) brains are sexually dimorphic.
Specimen part
View SamplesRift Valley Fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley Fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVFV vaccine, MP-12. From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with MP-12. While the serology and protective response induced by MP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood from vaccinates over a time course of 21 days before and after inoculation during a recent vaccine trial with MP-12. This RNA time course was deeply sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to immune response and regulation. Additional analyses identified a correlative relationship between specific genes related to immune activity and protective immunity prior to serologic detection of antibody response. These data provide an important proof of concept for identifying molecular and genetic components underlying the immune response to vaccination and protection prior to serologic detection. Overall design: Experimental Animals: Healthy, 4 – 6 month old Bos taurus heifer and steer calves were used in the present study. The calves were seronegative to both bovine viral diarrhea and bovine leukemia virus by antigen capture enzyme-linked immunosorbent assay (ELISA) analyses done at the Texas Veterinary Medical Diagnostic Laboratory, College Station, Texas and had no detectable neutralizing antibodies to RVFV by PRNT80 at the time of vaccination. The animal experiments were performed under an Institutional Animal Care and Use Committee approved protocol #2010-192. Vaccines: The authentic recombinant MP-12 (MP12) is an attenuated RVFV vaccine prepared for use in humans by the U. S. Army Medical Research Institute of Infectious Diseases. Vaccines were propagated and prepared at University of Texas Medical Branch in Galveston, TX. Experimental Design: The calves were housed in an ABSL2 Ag biocontainment facility where they were randomized into test groups and acclimated to the facility for 14 days. Animals were inoculated either subcutaneously (s.c.) or intramuscularly (i.m.) with 1x105 PFU of MP-12 (3 animals in each group). Whole blood was collected prior to inoculation on Days 0 through 7, 10, 14, 21 and preserved for serum neutralization studies (PRNT) or total RNA purification for RNASeq analysis. Experimentally determined PRNT values were used to determine the “serologic response status” for animals “unvaccinated”, “vaccinated, not protected”, or “vaccinated, protected” with animals having a serum dilution ration of >1:80 being considered protected. Only RNA samples that met the minimum quality and quantity thresholds were used for the sequencing analysis. Rectal temperatures were recorded each time blood was collected and their health status was documented daily. At the end of the respective studies, the calves were euthanized with pentobarbital sodium (120 mg/kg i.v.). All calves were healthy and clinically normal at the termination of the respective studies. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Jing Wu, Roberta Pugh, Pooja Kanani, L. Garry Adams, Shinji Makino, C. J. Peters. Immunogenicity of a Recombinant Rift Valley Fever MP-12 Vaccine Candidate in Calves. Vaccine. 2013. doi:10.1016/j.vaccine.2013.08.003. 238. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Roberta Pugh, Elena Sbrana, William J. Weise, L. Garry Adams, Shinji Makino and C. J. Peters.. Safety and Immunogenicity of Recombinant Rift Valley Fever MP-12 Vaccine Candidates in Sheep. Vaccine 10.1016/j.vaccine.2012.10.118, 2012.
Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.
Specimen part, Subject, Time
View SamplesThe liver is one of the most sexually dimorphic organs as measured by gene expression differences. About 80% of the sexually dimorphic genes are known to be regulated by growth hormone (GH). Somatostatin (SST) inhibits the release of GH.
Somatostatin is essential for the sexual dimorphism of GH secretion, corticosteroid-binding globulin production, and corticosterone levels in mice.
Sex, Specimen part
View SamplesCellular senescence is a stable proliferation arrest associated with an altered secretory pathway, the Senescence-Associated Secretory Phenotype (SASP). However, cellular senescence is initiated by diverse molecular triggers, such as activated oncogenes and shortened telomeres, and is associated with varied and complex physiological endpoints, such as tumor suppression and tissue aging. The extent to which distinct triggers activate divergent modes of senescence that might be associated with different physiological endpoints is largely unknown. To begin to address this, we performed gene expression profiling to compare the senescence programs associated with two different modes of senescence, oncogene-induced senescence (OIS) and replicative senescence (RS [in part caused by shortened telomeres]). While both OIS and RS are associated with many common changes in gene expression compared to control proliferating cells, they also exhibit substantial differences. These results are discussed in light of potential physiological consequences, tumor suppression and aging.
A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging.
Cell line
View SamplesOncogenic Ras induces epidermal cell growth arrest. Induction of the JNK/Ap1 signaling cascade by expression of MKK7 overcomes Ras-induced cell growth arrest in a manner dependent on AP1 fucntion.
Tumor necrosis factor receptor 1/c-Jun-NH2-kinase signaling promotes human neoplasia.
No sample metadata fields
View SamplesGlobal expression profiling of airway epithelial cells infected with Pseudomonas aeruginosa and the rsmA mutant.
Pseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y.
No sample metadata fields
View SamplesWe apply the cellular reprogramming experimental paradigm to two disorders caused by symmetrical copy number variations (CNV) of 7q11.23 and displaying a striking combination of shared as well as symmetrically opposite phenotypes: Williams Beuren syndrome (WBS) and 7q microduplication syndrome (7dupASD). Through a uniquely large and informative cohort of transgene-free patient-derived induced pluripotent stem cells (iPSC), along with their differentiated derivatives, we find that 7q11.23 CNV disrupt transcriptional circuits in disease-relevant pathways already at the pluripotent state. These alterations are then selectively amplified upon differentiation into disease-relevant lineages, thereby establishing the value of large iPSC cohorts in the elucidation of disease-relevant developmental pathways. In addition, we functionally define the quota of transcriptional dysregulation specifically caused by dosage imbalances in GTF2I (also known as TFII-I), a transcription factor in 7q11.23 thought to play a critical role in the two conditions, which we found associated to key repressive chromatin modifiers. Finally, we created an open-access web-based platform (accessible at http://bio.ieo.eu/wbs/ ) to make accessible our multi-layered datasets and integrate contributions by the entire community working on the molecular dissection of the 7q11.23 syndromes. Overall design: We reprogrammed skin fibroblasts from patients harbouring a 7q11.23 hemi-deletion (WBS, 4 patients; +1 atypical deletion, AtWBS) or microduplication (7dupASD; 2 patients), as well as from one unaffected relative and two unrelated controls, using integration-free mRNA-reprogramming, leading to the establishment of a total of 27 characterized iPSC clones. We profiled these by RNAseq (either polyA or ribo-zero). To isolate the contribution of GTF2I to the transcriptional dysregulation, we created stable lines expressing a short hairpin against GTF2I from a representative subset of these iPSC clones, and profiled by RNAseq 7 such lines along with their respective scramble controls. Finally, we also profiled by RNAseq mesenchymal stem cells (MSC) derived from a representative subset of the lines.
RNAontheBENCH: computational and empirical resources for benchmarking RNAseq quantification and differential expression methods.
No sample metadata fields
View Samples