Ly6Chi monocytes massively infiltrate the CRC-tumors by virtue of their CCR2 expression and further mature into Ly6CloF4/80hi CD64hiMHCII+ TAM upon tumor progression. We demonstrated that TAM-deficient tumors display impaired tumor-growth via alternation of the ECM morphology, structure and composition. Using advanced high-resolution optical imaging to visualize the tumoral-ECM macromolecule network together with transcriptomic and proteomic approaches we unraveled that TAM play critical role in the deposition, linearization and cross-linking of collagenous ECM. Remarkably, we show that cues embedded in ECM by TAM-mediated remodeling activity promote tumor cell proliferation in vitro and orthotopic tumor development in vivo.
Tumor macrophages are pivotal constructors of tumor collagenous matrix.
Sex, Specimen part
View SamplesUnderstanding distinct gene expression patterns of normal adult and developing fetal human pancreatic a and b cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase b cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify a, b, and d cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the sub-populations by flow cytometry and, using next generation RNA sequencing, we report on the detailed transcriptomes of fetal and adult a and b cells. We observed that human islet composition was not influenced by age, gender, or body mass index and transcripts for inflammatory gene products were noted in fetal b cells. In addition, within highly purified adult glucagon-expressing a cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet a and b cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes. Overall design: RNA-sequencing of highly purified human adult and fetal islet cell subset was performed using our newly developed method. Using this data, we can study and compare the detailed transcriptome or alpha and beta cells during development.
Novel Observations From Next-Generation RNA Sequencing of Highly Purified Human Adult and Fetal Islet Cell Subsets.
No sample metadata fields
View SamplesTuberous Sclerosis Complex (TSC) is a disease caused by autosomal dominant mutations in the TSC1 or TSC2 genes, and is characterized by tumor susceptibility, brain lesions, seizures and behavioral impairments. The TSC1 and TSC2 genes encode proteins forming a complex (TSC), which is a major regulator and suppressor of mammalian target of rapamycin (mTOR) in complex 1 (mTORC1), a signaling complex that promotes cell growth and proliferation. TSC1/2 loss of heterozygosity (LOH) and the subsequent complete loss of TSC regulatory activity in null cells causes mTORC1 dysregulation and TSC-associated brain lesions or other tissue tumors. However, it is not clear whether TSC1/2 heterozygous brain cells are abnormal and contribute to TSC neuropathology. To investigate this issue, we generated induced pluripotent stem cells (iPSCs) from TSC patients and unaffected controls, and utilized these to obtain neural progenitor cells (NPCs) and differentiated neurons in vitro. These patient-derived TSC2 heterozygous NPCs were delayed in their ability to differentiate into neurons. Patient-derived progenitor cells also exhibited a modest activation of mTORC1 signaling downstream of TSC, and a marked attenuation of upstream PI3K/AKT signaling. We further show that pharmacologic AKT inhibition, but not mTORC1 inhibition, causes a neuronal differentiation delay, mimicking the patient phenotype. Together these data suggest that heterozygous TSC2 mutations disrupt neuronal development, potentially contributing to the disease neuropathology, and that this defect may result from dysregulated AKT signaling in neural progenitor cells. Overall design: Two replicates each of TSC#1 and CON#1 NPC cell RNA were prepared for sequencing library preparation and seqeuencing.
Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation.
Specimen part, Subject
View SamplesThe 16p11.2 deletion and duplication syndromes have been associated with developmental delay and autism spectrum disorders, and a reciprocal effect on body mass index. Here we explored these links with new engineered mouse models carrying a deletion (Del/+) and duplication (Dup/+) of the whole 16p11.2 homologous Sult1a1-Spn region. On a pure genetic background, compared to wild-types, Del/+ mice carrying the deletion showed weight and adipogenesis deficits, hyperactivity, repetitive behaviors, and recognition memory deficits, whereas Dup/+ mice showed the opposite phenotypes and Del/Dup individuals displayed no changes. Alterations in social interaction were also observed in Del/+ and Dup/+ animals on a mixed genetic background.
Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.
Sex, Specimen part
View SamplesDespite the availability of large-scale transcriptomics data, specific long noncoding RNAs (lncRNAs) expressed in specific brain regions and populations of neurons are poorly understood. Here we report analysis of expression of lncRNAs and mRNAs expressed in hippocampus and prefrontal cortex (PFC), two regions of brain that are involved in memory storage and neuropsychiatric disorders. Our unbiased analyses have identified specific lncRNAs and mRNAs that are enriched in hippocampus and PFC. We have identified several regions in the chromosomes characterized by clustered lncRNA expression suggesting the transcriptional hotspots of lncRNA in the genome. We find that, a subset of lncRNAs and protein coding genes in their vicinity are uniquely co-expressed in specific brain regions and thus presumably co-regulated. Furthermore, specific brain regions and neuronal populations have characteristic lncRNA expression profile. These studies reveal unexpected complexity in the expression profiles of lncRNAs in the mammalian brain. Overall design: Examination of mRNAs and long noncoding RNAs in mouse hippocampus and prefrontal cortex of 8 adult mice.
Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations.
No sample metadata fields
View SamplesIt has long been recognized that anatomic location is an important feature for defining distinct subtypes of plaque psoriasis. However, little is known about the molecular differences between scalp, palmoplantar, and conventional plaque psoriasis. To investigate the molecular heterogeneity of these psoriasis subtypes, we performed RNA-seq and flow cytometry on skin samples from individuals with scalp, palmoplantar, and conventional plaque psoriasis, along with samples from healthy control patients. We performed differential expression analysis and network analysis using weighted gene coexpression network analysis (WGCNA). Our analysis revealed a core set of 763 differentially expressed genes common to all sub-types of psoriasis. In contrast, we identified 605, 632, and 262 genes uniquely differentially expressed in conventional, scalp, and palmoplantar psoriasis, respectively. WGCNA and pathway analysis revealed biological processes for the core genes as well as subtype-specific genes. Flow cytometry analysis revealed a shared increase in the percentage of CD4+ T regulatory cells in all psoriasis subtypes relative to controls, whereas distinct psoriasis subtypes displayed differences in IL-17A, IFN-gamma, and IL-22 production. This work reveals the molecular heterogeneity of plaque psoriasis and identifies subtype-specific signaling pathways that will aid in the development of therapy that is appropriate for each subtype of plaque psoriasis. Overall design: Transcriptomic profiles were obtained from palmoplantar (n = 3), scalp (n = 8), and conventional psoriatic skin (n = 8) as well as healthy control skin (n = 9) biopsies on the Illumina HiSeq 2000/4000 platforms. Multi-parameter FACS was also performed on each biopsy sample to obtain T cell populations (CD4+ T effectors, CD8+ T cells, and CD4+Foxp3+ Tregs).
RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways.
Specimen part, Disease, Disease stage, Subject
View SamplesWe used the next generation sequencing method to profile gene expression changes in cutaneous T effectors isolated from mice with early colonization with Staphylococcus aureus or Staphylococcus epidermidis Overall design: Whole transcriptomic RNAseq profile of cutaneous CD4+ T effector cells isolated from specific pathogen free (SPF) mice with early colonization of S. aureus(SA+SPF), S. epidermidis(SE+SPF) or no additional colonization(SPF).
Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization.
Specimen part, Cell line, Subject
View Samples