Neuromedin U (NMU), which is thought to contribute to putative metastasis processes in various tumor entities, was identified as being up-regulated in breast cancer. Therefore, we aimed to uncover the role of NMU in breast cancer subtypes deciphering for the first time NMU-driven signalling pathways and downstream targets.
Oncogenic features of neuromedin U in breast cancer are associated with NMUR2 expression involving crosstalk with members of the WNT signaling pathway.
Sex, Age, Specimen part, Cell line, Race
View SamplesThe unfolded protein response (UPR), as its name implies, safeguards secretory pathway proteostasis. The most ancient arm of the UPR, the IRE1-activated, XBP1s-mediated transcriptional response, has roles in secretory pathway maturation beyond resolving proteostatic stress. Understanding the consequences of XBP1s' transcriptional output for cellular processes is critical for elucidating mechanistic connections between XBP1s and development, immunity, and disease. Here, we show that a key functional consequence of XBP1s activation is a cell type-dependent shift in the distribution of N-glycan structures on endogenous membrane and secreted proteomes. XBP1s activity decreases sialylation of tri- and tetra-antennary N-glycans in the HEK293 membrane proteome and secretome, while substantially increasing the population of high mannose N-glycans only in the secretome. Related, but distinctive, signatures in the HEK293 N-glycome are observed when the entire UPR is activated in a stress-dependent manner using thapsigargin. In HeLa cells, stress-independent XBP1s activation increases the population of cell surface high mannose N-glycans and tetra-antennary N-glycans. mRNA profiling experiments suggest that the XBP1s-mediated remodeling of the N-glycome may re-flect a coordinated consequence of transcriptional resculpting of the N-glycan maturation pathway by XBP1s. The discovery of XBP1s-induced N-glycan structural remodeling on a glycome-wide scale suggests that XBP1s is a master regulator of N-glycan maturation. Moreover, because the sugars on cell surface proteins or on those proteins secreted from an XBP1s-activated cell can be molecularly distinct from those of an unactivated cell, these findings reveal a potential new mechanism for translating intracellular stress signaling pathways into al-tered interactions with the extracellular environment. Overall design: Three biological replicates of HeLaXBP1s cells treated with DMSO vehicle, 1 ug/ml dox or 750 nM Thapsigargin.
XBP1s activation can globally remodel N-glycan structure distribution patterns.
Cell line, Treatment, Subject, Time
View SamplesUC pouchitis is a potential model of UC. We prospectively examined the pouch transcriptomes of UC and familial adenomatous polyposis (FAP) IPAA patients to unveil molecular mechanisms of UC pouchitis susceptibility. Methods: Total RNA was isolated using the AllPrep DNA/RNA Mini Kit (QIAGEN, Cat No. 8020). RNA quality was evaluated using Bioanalyzer (Agilent, Santa Clara, CA). All RNA samples displayed RNA Integrity Number (RIN) >7. RNAseq including cDNA library preparation was processed at the Genomics Core Facility of University of Chicago (https://fgf.uchicago.edu/). Total RNA in the amount of 100-500µg per sample was depleted of ribosomal RNA using the Ribo-Zero kit (Epicentre, Madison, WI). The directional (first strand) cDNA libraries were prepared following the guide of TruSeq Stranded Total RNA Sample Preparation kit. Results: Unlike FAP patients, UC subjects exhibited a large set of differentially expressed genes (DEGs) between pouch and pre-pouch mucosa as early as 4 months after pouch functionalization. Functional pathway analysis of DEGs in UC pouch revealed: (1) Gain of colon-associated gene expressions and loss of ileum associated gene expressions, (2) enhanced state of immune/inflammatory response, and (3) suppressed xenobiotic, lipid, and bile acid metabolic pathways. These changes were corroborated upon reanalysis of a published larger cross-sectional study of UC and FAP patients. Moreover, >70% of DEGs mapped to published IBD and normal colonic microarray datasets displayed directional changes consistent with active UC, but not Crohn''s disease. Conclusions: UC patients exhibit a unique transcriptomic response to ileal pouch creation that can be observed well before disease. The transcriptome alterations provide insights into pouchitis Overall design: Seventeen patients with UC and four patients with FAP were recruited at the University of Chicago and the Mayo Clinic Rochester. All patients underwent a total proctocolectomy with ileal pouch anal anastomosis (IPAA) as a standard of care. UC patients underwent a pouchoscopy for biopsy of the pre-pouch ileum and pouch at 4 months, 8 months, and 12 months after ileostomy closure. None of these patients had pouchitis.
Early Transcriptomic Changes in the Ileal Pouch Provide Insight into the Molecular Pathogenesis of Pouchitis and Ulcerative Colitis.
Sex, Age, Specimen part, Disease, Race, Subject
View SamplesGut dysbiosis and host genetics are implicated as causative factors in inflammatory bowel disease, yet mechanistic insights are lacking. Longitudinal analysis of ulcerative colitis patients following total colectomy with ileal anal anastomosis (IPAA) where >50% develop pouchitis, offers a unique setting to examine cause vs. effect. To recapitulate human IPAA, we employed a mouse model of surgically-created blind self-filling (SFL) and self-emptying (SEL) ileal loops. SFL exhibit fecal stasis due to directional peristalsis motility oriented towards away from the loop end, whereas SEL remain empty. In wild type mice, SFL, but not SEL, develop pouch-like microbial communities without accompanying active inflammation. However, in genetically susceptible IL-10-/- deficient mice, SFL, but not SEL, exhibit severe inflammation and mucosal transcriptomes resembling human pouchitis. Germ-free IL10-/- mice conventionalized with wild type SFL, but not SEL, microbiota, develop severe colitis. These data demonstrate an essential role for fecal stasis, gut dysbiosis, and genetic susceptibility and offer insights into human pouchitis and ulcerative colitis.
Insights into the pathogenesis of ulcerative colitis from a murine model of stasis-induced dysbiosis, colonic metaplasia, and genetic susceptibility.
Specimen part
View SamplesPrimary pediatric Ewing sarcoma (ES), one uncharacterized sarcoma as well as primary and well established ES cell lines were compared to probes of different normal tissues
Distinct transcriptional signature and immunoprofile of CIC-DUX4 fusion-positive round cell tumors compared to EWSR1-rearranged Ewing sarcomas: further evidence toward distinct pathologic entities.
Specimen part, Cell line, Subject
View SamplesWe utilized RNA-Seq on rat Schwann (S16) cells to determine global gene expression. This information was generated as part of a larger effort to characterize cis-regulatory elements and global gene expression within Schwann cells. To achieve this, we generated RPKM values across two independent biological replicates. This dataset was also used to predict cis-regulatory element function on genes following CRISPR knockout studies. Overall design: Performed two technical replicates of RNA-Seq on two independent biological replicates of S16 cells
A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve.
No sample metadata fields
View SamplesLiposarcoma is the most common soft tissue sarcoma, accounting for about 20% of cases. Liposarcoma is classified into 5 histologic subtypes that fall into 3 biological groups characterized by specific genetic alterations. To identify genes that contribute to liposarcomagenesis and to better predict outcome for patients with the disease, we undertook expression profiling of liposarcoma. U133A expression profiling was performed on 140 primary liposarcoma samples, which were randomly split into training set (n=95) and test set (n=45). A multi-gene predictor for distant recurrence-free survival (DRFS) was developed using the supervised principal component method. Expression levels of the 588 genes in the predictor were used to calculate a risk score for each patient. In validation of the predictor in the test set, patients with low risk score had a 3-year DRFS of 83% vs. 45% for high risk score patients (P=0.001). The hazard ratio for high vs. low score, adjusted for histologic subtype, was 4.42 (95% confidence interval 1.26-15.55; P=0.021). The concordance probability for risk score was 0.732. Genes related to adipogenesis, DNA replication, mitosis, and spindle assembly checkpoint control were all highly represented in the multi-gene predictor. Three genes from the predictor, TOP2A, PTK7, and CHEK1, were found to be overexpressed in liposarcoma samples of all five subtypes and in liposarcoma cell lines. Knockdown of these genes in liposarcoma cell lines reduced proliferation and invasiveness and increased apoptosis. Thus, genes identified from this predictor appear to have roles in liposarcomagenesis and have promise as therapeutic targets. In addition, the multi-gene predictor will improve risk stratification for individual patients with liposarcoma.
Expression profiling of liposarcoma yields a multigene predictor of patient outcome and identifies genes that contribute to liposarcomagenesis.
Specimen part
View SamplesWe performed a transcriptome-wide study to compare gene expression profiles of ECFC, human coronary artery endothelial cells (HCAEC) and human umbilical vein endothelial cells (HUVEC) utilising subcutaneous adipose tissue-derived stromal vascular fraction (SAT-SVF) as a negative control population. Baseline gene expression in ECFC fully corresponds to their endothelial specification and may contribute to the basement membrane organisation, fulfilling the requirements for the suitable cell population for in vitro pre-endothelialisation of tubular scaffolds. Overall design: Comparison of gene expression in 4 cell types by Hiseq sequencing.
Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.
Specimen part, Cell line
View SamplesETV1 is highly expressed in GIST cells and required for their survival and growth. To identify genes and pathways regulated by ETV1 in GIST, we performed expression profiles of GIST cells after ETV1 knockdown.
ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.
Specimen part, Cell line
View Samples