We studied the variations of mRNA amounts after Flag-EVI1, Flag-EVI1324, or Flag expression in HeLa cells. Despites EVI1 discovery in 1988, its recognized role as a dominant oncogene in myeloid leukemia and more recently in epithelial cancers, only a few target genes were known and it was not clear why EVI1 was involved in cancer progression. Here we obtained the genomic binding occupancy and expression data for EVI1 in human cells. We identified numerous EVI1 target cancer genes and genes controlling cell migration and adhesion. Moreover, we characterized a transcriptional cooperation between AP1 and EVI1 that regulated proliferation and adhesion through a feed-forward loop. This study provides human genome-wide mapping and expression analyses for EVI1 that will be useful for the research community.
Functional features of EVI1 and EVI1Δ324 isoforms of MECOM gene in genome-wide transcription regulation and oncogenicity.
Cell line
View SamplesHypertension remains a poorly understood condition, and the understanding of the sympathetic nervous systems role in this disease remains even more limited. In this study, RNA-sequencing is used to identify transcriptomal differences in the sympathetic stellate ganglia between the 16-week-old normotensive wistar strain and the spontaneously hypertensive rat strain.This dataset should allow for further molecular characterisation of hypertensive changes in a cardiac-innervating sympathetic ganglion. Overall design: Comparison of normotensive and hypertensive rat stellate ganglia. 4 biological replicates for both 16 week wistar and SHR stellate ganglia samples were contrasted
Neurotransmitter Switching Coupled to β-Adrenergic Signaling in Sympathetic Neurons in Prehypertensive States.
No sample metadata fields
View SamplesAdult right ventricle from Tetralogy of Fallot patients undergoing pulmonary valve replacement vs right ventricle myocardium from unused donor hearts
Right Ventricle Has Normal Myofilament Function But Shows Perturbations in the Expression of Extracellular Matrix Genes in Patients With Tetralogy of Fallot Undergoing Pulmonary Valve Replacement.
Specimen part
View SamplesKRAS mutations are present at a high frequency in human cancers. The development of therapies targeting mutated KRAS requires cellular and animal preclinical models. We exploited adeno-associated virus-mediated homologous recombination to insert the KRAS G12D allele in the genome of mouse somatic cells. Heterozygous mutant cells displayed a constitutively active Kras protein, marked morphologic changes, increased proliferation and motility but were not transformed. On the contrary, mouse cells in which we overexpressed the corresponding KRAS cDNA were readily transformed. The levels of Kras activation in knock-in cells were comparable with those present in human cancer cells carrying the corresponding mutation. KRAS-mutated cells were compared with their wild-type counterparts by gene expression profiling, leading to the definition of a "mutated KRAS-KI signature" of 345 genes. This signature was capable of classifying mouse and human cancers according to their KRAS mutational status, with an accuracy similar or better than published Ras signatures. The isogenic cells that we have developed recapitulate the oncogenic activation of Kras occurring in cancer and represent new models for studying Kras-mediated transformation. Our results have implications for the identification of human tumors in which the oncogenic KRAS transcriptional response is activated and suggest new strategies to build mouse models of tumor progression.
Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers.
No sample metadata fields
View SamplesLoss of function of FMR2 due to either hypermethylation of the CpG island as a consequence of the expansion of the CCG repeat near its transcription start site, or internal deletion of FMR2 is considered to be the major cause of FRAXE fragile site associated intellectual disability. FMR2 was shown to be a potent transcription activator as well as an RNA binding protein capable of regulating alternative splicing.
Loss of FMR2 further emphasizes the link between deregulation of immediate early response genes FOS and JUN and intellectual disability.
No sample metadata fields
View SamplesThe recent identification of novel progenitor populations that contribute to the developing heart in a distinct temporal and spatial manner has fundamentally improved our understanding of cardiac development. However, little remains known about cardiac specification events prior to the establishment of the heart tube, or the mechanisms that direct atrial versus ventricular specification. We have identified a novel progenitor population that gives rise specifically to cardiovascular cells of the ventricles but not the atria, and to the epicardium of the differentiated heart. We determined that this cell population is first specified during gastrulation, when it transiently expresses Foxa2, a gene not previously implicated in cardiac development. Using chimeric mosaic analysis we further demonstrate that Foxa2 is cell-autonomously required for the development of ventricular cells. Finally, we reveal the existence of an analogous Foxa2+ cardiac mesoderm population during in vitro differentiation from embryonic stem cells and illustrate that these cells express genes relevant for heart development. Our data thus describe the first progenitor population identified as early as gastrulation that displays ventricular-specific differentiation potential. Together, these findings provide important new insights into the developmental origin of ventricular and atrial myocytes, and will lead to the establishment of new strategies for generating these cell types from pluripotent stem cells. Overall design: Examination of global gene expression in four different cell types
Foxa2 identifies a cardiac progenitor population with ventricular differentiation potential.
Specimen part, Subject
View SamplesSkeletal muscle regeneration is a highly dynamics process. The study aims at investigating gene expression by endothelial cells and satellite/myogenic cells during this process, in mouse, after a toxic injury
Coupling between Myogenesis and Angiogenesis during Skeletal Muscle Regeneration Is Stimulated by Restorative Macrophages.
Specimen part, Time
View SamplesInterstitial cells of Cajal (ICC) have important functions in regulation of motor activity in the gastrointestinal tract. In murine small intestine ICC are gathered in the region of the myenteric plexus (ICC-MY) and within the deep-muscular plexus near the submucosal surface of the circular muscle layer (ICC-DMP). These two classes of ICC have different physiological functions.
Differential gene expression in functional classes of interstitial cells of Cajal in murine small intestine.
No sample metadata fields
View SamplesPurpose: The goal of this study is to determine whether ectopic expression of the GLI2 transcription factor in the human pancreatic cancer cell line, YAPC is sufficient to cause gene expression changes associated with a EMT switch. Methods: RNA was isolated from YAPC cells engineered to express a doxycycline inducible cassette for ectopic expression of GLI2 following treatment with 1ug/ml of Dox for 6 days. Control YAPC cells expressing an "empty vector" dox inducible cassette were similarly treated for 6 days with 1ug/u Dox and RNA was collected. Three biologically destinct replicates were submitted for library preparation and RNA-sequencing on an Illumina hiseq 2000. The sequence reads that passed quality filters were analyzed at the transcript level using TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays Results: RNA-seq data confirmed stable over-expression of GLI2 in the YAPC-rtta-GLI2 cells and not in the EV control cells treated with Dox. Target genes of interest were validated by qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for all target genes tested. Gene set enrichment analysis of differentially expressed genes showed enrichment of EMT associated pathways which was further validated using functional assays. In addition a statistically significant alteration in SPP1 transcript was discovered in GLI2 overexpressing cells which formed the basis of ongoing experiments in the study. Conclusions: Our data support a role for GLI2 in regulation of genes associated with basal-like subtype switching including SPP1 Overall design: mRNA profiles from human pancreatic cancer cell lines YAPC-rtta-GLI2 and YAPC-rtta-EV treatment with doxycyline for 6 days were compared, in triplicate.
Transcriptional control of subtype switching ensures adaptation and growth of pancreatic cancer.
No sample metadata fields
View SamplesAlveolar rhabdomyosarcoma (aRMS) is an aggressive sarcoma of skeletal muscle characterized by expression of the PAX3-FOXO1 fusion gene. Despite its discovery over almost 20 years ago, PAX3-FOXO1 remains an enigmatic tumor driver. Previously, we reported that PAX3-FOXO1 supports aRMS initiation by enabling bypass of cellular senescence. Here, we show that bypass occurs in part by PAX3-FOXO1-mediated upregulation of RASSF4, a Ras-association domain family (RASSF) member, which then suppresses the evolutionarily conserved mammalian Hippo/Mst1 pathway. RASSF4 loss-of-function activates Hippo/Mst1 and inhibits downstream YAP, causing aRMS cell cycle arrest and senescence. This is the first evidence for an oncogenic role for RASSF4, and a novel mechanism for Hippo signaling suppression in human cancer.
Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression.
Cell line, Treatment
View Samples