T2 progenies of two transgenic lines overexpressing ERF transcription factor WIN1 were grown on soil in parallel under identical conditions. mRNA was extracted from pooled leaves from multiple plants of each line for the microarray experiement.
WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis.
No sample metadata fields
View SamplesThe objective of the study was to better understand the mechanism behind scar formation by identifying ECM factors and other unique genes differentially expressed during rat ligament healing via microarray. Rat medial collateral ligaments (MCL) were surgically transected or left intact. MCLs were collected at day 3 or 7 post-injury and used for microarray analysis. Results were compared to the normal intact ligaments.
Gene profiling of the rat medial collateral ligament during early healing using microarray analysis.
Sex, Specimen part
View SamplesAnalysis of estrogen receptor (ER)-positive MCF7 cell total RNA expression and polysome-assiciated RNA expression following treatment with estradiol (E2) and vehicle (etoh).
Estrogen coordinates translation and transcription, revealing a role for NRSF in human breast cancer cells.
Cell line
View SamplesWe define the effects of reduced insulin production in beta-cells from tamoxifen-treated Ins1-/-:Ins2f/f:Pdx1CreERT:mTmG mice studied at a time point when insulin production was reduced by ~50%. Overall design: Examination of the transcriptome of adult pancreatic islets from mice with acute Ins2 gene knockout out on an Ins1 null background
Reduced Insulin Production Relieves Endoplasmic Reticulum Stress and Induces β Cell Proliferation.
Specimen part, Treatment, Subject
View SamplesPurpose: The ability to rationally manipulate the transcriptional states of cells would be of great use in medicine and bioengineering. We have developed a novel algorithm, NetSurgeon, which utilizes genome-wide gene regulatory networks to identify interventions that force a cell toward a desired expression state. Results: We used NetSurgeon to select transcription factor deletions aimed at improving ethanol production in S. cerevisiae cultures that are catabolizing xylose. We reasoned that interventions that move the transcriptional states of cells utilizing xylose toward the fermentative state typical of cells that are producing ethanol rapidly (while utilizing glucose) might improve xylose fermentation. Some of the interventions selected by NetSurgeon successfully promoted a fermentative transcriptional state in the absence of glucose, resulting in strains with a 2.7-fold increase in xylose import rates, a 4-fold improvement in xylose integration into central carbon metabolism, or a 1.3-fold increase in ethanol production rate. Conclusions: We conclude by presenting an integrated model of transcriptional regulation and metabolic flux that will enable future metabolic engineering efforts aimed at improving xylose fermentation to prioritize functional regulators of central carbon metabolism. Overall design: Mutant and wildtype S. cerevisiae cells were put into 48 hour aerobic batch fermentations of synthetic complete medium supplmented with 2% glucose and 5% xylose and culture samples were taken at 4 hours and 24 hours for transcriptional profiling performed by RNA-Seq analysis. In addition, wildtype S. cerevisiae cells were grown in various single carbon sources for 12 hours and culture samples were taken for transcriptional profiling performed by RNA-Seq analysis.
Model-based transcriptome engineering promotes a fermentative transcriptional state in yeast.
Subject
View SamplesHigher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression. Overall design: RNA-seq profiles of C. elegans L1 wild type hermaphrodites, cec-4, met-2 set-25, and DPY-27 RNAi. RNA-seq profiles or C. elegans. Strains are N2 Bristol strain (wild type), RB2301 cec-4(ok3124) IV, and EKM99 met-2(n4256) set-25(n5021) III. Biological replicates for each strain/stage listed separately.
Anchoring of Heterochromatin to the Nuclear Lamina Reinforces Dosage Compensation-Mediated Gene Repression.
Specimen part, Subject
View SamplesSingle-cell RNA-seq (Smart-Seq2) to profile of cardiac progenitor cells Overall design: Transcriptional profiling of cultured CPCs was performed by scRNA-Seq approaches using Smart-Seq2 technology
In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells.
Specimen part, Subject
View SamplesBulk RNA-seq to profile of c-kit+ cardiac interstitial cells, comparing the transcriptomes of Pim-1 enhanced cardiac progenitor cells and transfection control Overall design: Transcriptional profiling of Pim-1 enhanced human derived cardiac interstitial cells by bulk RNA-Seq
Safety profiling of genetically engineered Pim-1 kinase overexpression for oncogenicity risk in human c-kit+ cardiac interstitial cells.
Specimen part, Subject
View SamplesGene expression profiles from 280 formalin-fixed and paraffin embedded normal and tumor samples of four cancer types
Regulatory T-cell Genes Drive Altered Immune Microenvironment in Adult Solid Cancers and Allow for Immune Contextual Patient Subtyping.
Sex, Age, Specimen part
View SamplesFew studies have investigated heterogeneity of selection response in replicate lines subjected to equivalent selection. We developed 4 replicate lines of mice based on high levels of voluntary wheel running (high runner or HR lines) while also maintaining 4 non-selected control lines. This led to the unexpected discovery of the HR mini-muscle (HRmini) phenotype, recognized by a 50% reduction in hindlimb muscle mass, which became fixed in 1 of the 4 HR selected lines.
Gene expression profiling of gastrocnemius of "minimuscle" mice.
Sex, Specimen part
View Samples