refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 421 results
Sort by

Filters

Technology

Platform

accession-icon GSE27982
Genetic and pharmacologic approach to identify genes regulated by mTORC1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a critical regulator of cell growth by integrating multiple signals (nutrients, growth factors, energy and stress) and is frequently deregulated in many types of cancer. We used a robust experimental paradigm involving the combination of two interventions, one genetic and one pharmacologic to identify genes regulated transcriptionally by mTORC1. In Tsc2+/+, but not Tsc2-/- immortalized mouse embryo fibroblasts (MEFs), serum deprivation downregulates mTORC1 activity. In Tsc2-/- cells, abnormal mTORC1 activity can be downregulated by treatment with rapamycin (sirolimus). By contrast, rapamycin has little effect on mTORC1 in Tsc2+/+ cells in which mTORC1 is already inhibited by low serum. Thus, under serum deprived conditions, mTORC1 activity is low in Tsc2+/+ cells (untreated or rapamycin treated), high in Tsc2-/- cells, but lowered by rapamycin; a pattern referred to as a low/low/high/low or LLHL, which allowed the identification of genes regulated by mTORC1 by performing the appropriate comparisons

Publication Title

Regulation of TFEB and V-ATPases by mTORC1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE1413
AKT_Prostate_RAD001_v_PLACEBO
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Transgenic (Probasin driven Myr-AKT)or wild-type littermates were treated with RAD001 or placebo and sacrificed at 12 and 48 hours following the beginning of treatment

Publication Title

mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36895
Molecular Genetic Classification of clear-cell Renal Cell Carcinoma (ccRCC) based on the Gene Expression Profiling of Tumors and Tumorgrafts deficient for BAP1 or PBRM1
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Renal cell carcinoma (RCC) exhibits some unusual features and genes commonly mutated in cancer are rarely mutated in clear-cell RCC (ccRCC), the most common type. The most prevalent genetic alteration in ccRCC is the inactivation of the tumor suppressor gene VHL. Using whole-genome and exome sequencing we discovered BAP1 as a novel tumor suppressor in ccRCC that shows little overlap with mutations in PBRM1, another recent tumor suppressor. Whereas VHL was mutated in 81% of the patients (142/176), PBRM1 was lost in 58% and BAP1 in 15% of the patients analyzed. All these tumor suppressor genes are located in chromosome 3p, which is partially or completely lost in most ccRCC patients. However, BAP1 but not PBRM1 loss was associated with higher Fuhrman grade and, therefore, poorer outcome. Xenograft tumors (tumorgrafts) implanted orthotopically in mice exhibited similar gene expression profiling to corresponding primary tumors. Gene expression profiling of tumors and tumorgrafts displayed different signatures for BAP1- and PBRM1-deficient samples. Thus, after inactivation of VHL, the acquisition of a mutation in BAP1 or PBRM1 defines a different program that might alter the fate of the patient. Our results establish the foundation for an integrated pathological and molecular genetic classification of about 70% of ccRCC patients, paving the way for subtype-specific treatments exploiting genetic vulnerabilities.

Publication Title

BAP1 loss defines a new class of renal cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon SRP073253
Transcriptomics of Kidney Cancer Samples
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptomics of Kidney Cancer Samples.

Publication Title

Targeting renal cell carcinoma with a HIF-2 antagonist.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE9128
Expression data from heart failure vs control peripheral blood mononuclear cells.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Inflammatory mediators play a role in the pathogenesis/progression of chronic heart failure (CHF). The aim of the present study was to identify diagnostic/prognostic markers and gene expression profiles of CHF vs control.

Publication Title

Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP027011
In search of epigenetic marks in testes and sperm cells of differentially fed boars [RNA-Seq]
  • organism-icon Sus scrofa
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We investigated the nutritional effects on gene expression in sperm cells of F0 boars from a three generation Large White pig feeding experiment. A group of experimental (E) F0 boars were fed a standard diet supplemented with high amounts of methylating micronutrients whereas a control (C) group of F0 boars received a standard diet. These differentially fed F0 boars sired F1 boars which then sired 60 F2 pigs which were investigated in a previous study. The aim of this study was to investigate if the nutrition affects gene expression in sperm cells of differentially fed boars and thus carry information in the form of RNA molecules to the next generation. Four RNA samples from sperm cells of these differentially fed boars were analyzed by RNA-Seq methodology. We found no differential RNA expression in sperm cells of the two groups based on the adjusted P-value > 0.05. Nevertheless, we performed a pathway analysis with 105 genes that differed in gene expression on the level of nominal P-value < 0.05 between the two diet groups. We found a significant number of these differentially expressed genes were enriched for the pathway maps of bacterial infections in cystic fibrosis (CF) airways, glycolysis and gluconeogenesis p.3 and cell cycle_Initiation of mitosis. The GO processes including a significant portion of differentially expressed genes were viral transcription and viral genome expression, viral infectious cycle, cellular protein localization, cellular macromolecule localization, nuclear-transcribed mRNA catabolic process and nonsense-mediated decay. In summary, the results of the pathway analysis are also inconclusive and it is concluded that RNA expression in sperm cells is not significantly affected by extensive supplementation of methylating micronutrients. Consequently, RNA molecules could not be established as epigenetic marks in this feeding experiment. Overall design: Gene expression in sperm cells from differentially fed F0 boars was measured. F0 boars received either a standard diet or a standard diet supplemented with methylating micronutrients. These boars were used to study transgenerational epigenetic inheritance in a three generation pig pedigree. Therefore it was of interest if the diet affects gene expression in sperm cells which could then be transmitted to next generations.

Publication Title

In search of epigenetic marks in testes and sperm cells of differentially fed boars.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon E-MEXP-739
Transcription profiling of by array of Arabidopsis plants infected with powdery mildew and treated with Syringolin A
  • organism-icon Arabidopsis thaliana
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Powdery mildew, caused by the fungus Blumeria graminis (DC) Speer, is one of the most important foliar diseases of cereals worldwide. It is an obligate biotrophic parasite, colonising leaf epidermal cells to obtain nutrients from the plant cells without killing them. Syringolin A (sylA), a circular peptide secreted by the phytopathogenic bacterium Pseudomonas syringae pv. syringae, triggers a hypersensitive cell death reaction (HR) at infection sites when sprayed onto powdery mildew infected wheat which essentially eradicates the fungus. The rational was to identify genes whose expression was specifically regulated during HR, i.e. genes that might be involved in the switch of compatibility to incompatibility.<br></br>Powdery mildew-infected or uninfected plants were treated with syringolin two days after infection and plant material for RNA extraction was collected at 0.5, 1, 2, 4, 8, 12 hours after treatment (hat), resulting in an early (2 and 4 hat) and late pool (8 and 12 hat). Plant material that was uninfected prior to syringolin treatment was collected 8 and 12 hat (late pool of uninfected plant material), and 1 hat, respectively.

Publication Title

Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites.

Sample Metadata Fields

Compound, Time

View Samples
accession-icon GSE76610
Overexpression of Crumbs3/CRB3 in human mammary epithelial line MCF-10A
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Our data demonstrate that overexpression of the polarity protein Crb3 elicits changes in MCF-10A cells that culminate in an increase in the release of amphiregulin (AR) and the subsequent activation of EGFR signaling to drive proliferation. Microarray analysis was performed to define global changes in the transcriptional landscape induced by Crb3. Results provide insight into a FERM domain protein (EBP41L4B) required for Crb3 mediated induction of proliferation.

Publication Title

CRB3 and the FERM protein EPB41L4B regulate proliferation of mammary epithelial cells through the release of amphiregulin.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP020644
RNAseq comparison of gene expression profiles in Osr1 mutant and control mouse embryonic tongue
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The tongue is a muscular organ in the vertebrate oral cavity that performs complex functions in daily life, including feeding and phonetic articulation. The tongue consists of mesenchyme cells of two distinct origins: the muscle cells are derived from occipital somites whereas the tendons and other connective tissues derived from the cranial neural crest. Cranial neural crest cells are important for the initiation of tongue swelling and proper patterning of intrinsic and extrinsic tongue muscle groups. However, little is known regarding the molecular and cellular mechanisms of tongue morphogenesis. We show that the odd-skipped related 1 (Osr1) transcription factor exhibits dynamic expression in the tongue mesenchyme during early tongue development. Tissue-specific inactivation of Osr1 in the early neural crest cells resulted in ectopic cartilage formation in the mouse tongue. We show that Sox9, the master regulator of chondrocyte differentiation, is initially widely expressed in the neural crest derived mesenchyme in the tongue and subsequently down-regulated concomitant by up-regulation of Osr1 expression. Osr1 mutant embryos exhibit persistent expression of Sox9 and chondrocyte differentiation from the neural crest derived tongue mesenchyme. Further biochemical analyses indicate that Osr1 may directly suppresses Sox9 gene expression in the tongue mesenchyme. These data reveal a novel mechanism in suppression of chondrogenic fate during tongue development. Remarkably, the ectopic cartilage in the Osr1 mutant mice resembles the entoglossal cartilage naturally develops in the avian tongue. These results suggest that modulation of expression of Osr1 may underline the evolutionary divergence in tongue cartilage formation. RNAs were isolated from microdissected E12 embryonic mouse tongue of Osr1f/-;Wnt1cre and control littermates and characterized by RNAseq Overall design: E12 mouse embryonic tongues were micro-dissceted, 3 pairs of control and mutant samples were pooled for the RNA extraction

Publication Title

Odd-skipped related-1 controls neural crest chondrogenesis during tongue development.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP117604
Cilia-dependent GLI processing in neural crest cells is required for tongue development
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the RNA profiles of both control and Kif3a f/f; Wnt1-Cre mandibular prominences of the murine face at embryonic day E11.5. We sought to determine the gene expression changes which occurr in the mandibular prominence when primary cilia are lost on neural crest cells. Overall design: The mandibular prominence from 10 control e11.5 embryos were collected and pooled, and 10 mutant e11.5 embryos were collected and pooled. RNA-seq was performed on these samples.

Publication Title

Cilia-dependent GLI processing in neural crest cells is required for tongue development.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact