Mouse skin fibroblasts (MSFs) were obtained from a FASST (Fibroblasts Accelerate Stromal-Supported Tumorigenesis) mouse. This mouse model allows for spatial and temporal control for senescence induction by using a stromal specific Cre-recombinase driven by the pro-collagen-alpha II promoter. The stromal specific Cre activates expression of the p27IRESGFP transgene that is expressed from the ROSA locus. We cultured the MSFs in vitro, induced senescence using 10uM tamoxifen added to the media. Non-senescent cells were treated with equal volume of vehicle alone (ethanol). Upon tamoxifen treatment, cells were moved to a modular incubation chamber and maintained at 3% oxygen at 37 degrees celcius for 12 days total before collection. At the time of collection, cells were trypsynized and pelleted by centrifugation. The cells were lysed using Trysol reagent and RNA was isolated using a RiboPure RNA isolation kit (Ambion). Overall design: For this study, 2 treatment groups were analyzed (non-senescent, EtOH samples and senescent, TAM samples). Each treatment group was performed 3 times for a total of 6 samples for analysis. The gene expression analysis is a comparison of expression in senescent (TAM) vs non-senescent (EtOH) mouse skin fibroblasts.
Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis.
Specimen part, Cell line, Treatment, Subject
View SamplesPolycomb group (PcG) proteins form multiprotein complexes, called Polycomb repressive complexes (PRCs). PRC2 contains the PcG proteins EZH2, SUZ12, and EED and represses transcription through methylation of lysine (K) 27 of histone H3 (H3). Suz12 is essential for PRC2 activity and its inactivation results in early lethality of mouse embryos.
The polycomb group protein Suz12 is required for embryonic stem cell differentiation.
Specimen part
View SamplesWild-type cells were cultured at 30 deg and cells were harvested. Total RNAs were purified from 3 populations.
Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation.
No sample metadata fields
View SamplesOBJECTIVES: Kidney stone diseases are common in premature infants, but the underlying molecular and cellular mechanisms are not fully defined. We carried out a prospective observational study using microarray analysis to identify factors that may be crucial for the initiation and progression of stone-induced injury in the developing mouse kidney.
2,8-dihydroxyadenine nephrolithiasis induces developmental stage-specific alterations in gene expression in mouse kidney.
Sex, Specimen part
View SamplesIn comparison to MØs, MEMs have increased expression of the inhibitory molecules PD-L1, PD-L2, in addition to markers of alternatively activated macrophages: CD206 and CD163. RNA-Seq analysis of MEMs, as compared to MØs, show a distinct gene expression profile that positively correlates with multiple pathways important in tissue repair. MEMs also show increased expression of IL-6, TGF-ß, Arginase-1, CD73, and decreased expression of IL-12 and TNF-a. We show that IL-6 secretion is controlled in part by the COX-2, arginase and JAK1/STAT1 pathway. When tested in vivo, we show that human MEMs significantly enhance survival from lethal GVHD, and improve survival of mice from radiation injury. Overall design: Human macrophages were isolated from PBMCs and then exposed to MSCs. RNA was isolated then subjected to RNA-Seq.
Human Mesenchymal Stem Cell-Educated Macrophages Are a Distinct High IL-6-Producing Subset that Confer Protection in Graft-versus-Host-Disease and Radiation Injury Models.
Specimen part, Subject
View SamplesThe goal of this study is to determine if pDCs reconstituted from T cell depleted allogeneic STAT1-/- bone marrow express genes that contribute to Graft versus host disease (GVHD) resistance as compared to STAT1+/+ bone marrow
Absence of STAT1 in donor-derived plasmacytoid dendritic cells results in increased STAT3 and attenuates murine GVHD.
Specimen part
View SamplesThe balance between tolerogenic and inflammatory responses determines immune homeostasis in the gut. Dysbiosis and a defective host defense against invading intestinal bacteria can shift this balance via bacterial-derived metabolites and trigger chronic inflammation. We show that the short chain fatty acid butyrate modulates monocyte to macrophage differentiation by promoting antimicrobial effector functions. The presence of butyrate modulates antimicrobial activity via a shift in macrophage metabolism and reduction in mTOR activity. This mechanism is furthermore dependent on the inhibitory function of butyrate on histone deacetylase 3 (HDAC3) driving transcription of a set of antimicrobial peptides including calprotectin. The increased antimicrobial activity against several bacterial species is not associated with increased production of conventional cytokines. Butyrate imprints antimicrobial activity of intestinal macrophages in vivo. Our data suggest that commensal bacteria derived butyrate stabilize gut homeostasis by promoting antimicrobial host defense pathways in monocytes that differentiate into intestinal macrophages. Overall design: Paired samples of control and butyrate-treated macrophages prepared from two individuals.
The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages.
Specimen part, Subject
View SamplesInflammatory mediators play a role in the pathogenesis/progression of chronic heart failure (CHF). The aim of the present study was to identify diagnostic/prognostic markers and gene expression profiles of CHF vs control.
Gene expression profiles in peripheral blood mononuclear cells of chronic heart failure patients.
No sample metadata fields
View SamplesThis study analyzed mRNA profiles in rhombomere 4 of E10.5 mouse knock-in embryos expressing either normal endogenous Hox-B1 protein or the paralogous Hox-A1 protein from the Hoxb1 locus. The Hox-A1 protein was found to be detectably less efficacious than Hox-B1 in promoting neurogenesis in the basal plate of rhombomere 4 and its transcriptional profile shared several similarities with the Hoxb1 mutant.
Reversal of Hox1 gene subfunctionalization in the mouse.
No sample metadata fields
View SamplesHoxb1 is required for proper specification of rhombomere 4 and the facial motor neurons. This study analyzed gene expression in the corresponding hindbrain segment of E10.5 mutant embryos. Several genetic pathways were found altered, including transcription factors such as Phox2b, Gata3, Nkx2-2 and Nkx6-1.
Reversal of Hox1 gene subfunctionalization in the mouse.
No sample metadata fields
View Samples