Drought tolerance is a key trait for increasing and stabilizing barley productivity in dry areas worldwide. Identification of the genes responsible for drought tolerance in barley (Hordeum vulgare L.) will facilitate understanding of the molecular mechanisms of drought tolerance, and also genetic improvement of barley through marker-assisted selection or gene transformation. To monitor the changes in gene expression at transcription levels in barley leaves during the reproductive stage under drought conditions, the 22K Affymetrix Barley 1 microarray was used to screen two drought-tolerant barley genotypes, Martin and Hordeum spontaneum 41-1 (HS41-1), and one drought-sensitive genotype Moroc9-75. Seventeen genes were expressed exclusively in the two drought-tolerant genotypes under drought stress, and their encoded proteins may play significant roles in enhancing drought tolerance through controlling stomatal closure via carbon metabolism (NADP malic enzyme (NADP-ME) and pyruvate dehydrogenase (PDH), synthesizing the osmoprotectant glycine-betaine (C-4 sterol methyl oxidase (CSMO), generating protectants against reactive-oxygen-species scavenging (aldehyde dehydrogenase (ALDH), ascorbate-dependant oxidoreductase (ADOR), and stabilizing membranes and proteins (heat-shock protein 17.8 (HSP17.8) and dehydrin 3 (DHN3). Moreover, 17 genes were abundantly expressed in Martin and HS41-1 compared with Moroc9-75 under both drought and control conditions. These genes were likely constitutively expressed in drought-tolerant genotypes. Among them, 7 known annotated genes might enhance drought tolerance through signaling (such as calcium-dependent protein kinase (CDPK) and membrane steroid binding protein (MSBP), anti-senescence (G2 pea dark accumulated protein GDA2) and detoxification (glutathione S-transferase (GST) pathways. In addition, 18 genes, including those encoding l-pyrroline-5-carboxylate synthetase (P5CS), protein phosphatase 2C-like protein (PP2C) and several chaperones, were differentially expressed in all genotypes under drought; thus, they were more likely general drought-responsive genes in barley. These results could provide new insights into further understanding of drought-tolerance mechanisms in barley.
Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage.
Specimen part, Treatment
View SamplesWe performed RNA-Seq transcriptome profiling on 29 immune cell types consituting peripheral blood mononuclear cells (PBMCs) sorted from 4 Singaporean-Chinese individuals (S4 cohort). We also performed RNA-Seq and microarray transcriptome profiling of PBMCs from an extended cohort of 13 individuals (S13 cohort). The data was used first to characterize the transcriptomic signatures and relationships among the 29 immune cell types. Then we explored the difference in mRNA composition in terms of transcripts proportions and abundance. Lastly, we performed deep deconvolution for both microarray and RNA-Seq technologies. Overall design: Total RNA of 29 immune cell types (from 4 individuals) and peripheral blood mononuclear cells (PBMCs, from 13 individuals) was extracted for gene expression profiling. The 13 PBMCs samples were processed with both microarray and RNA-Seq platforms.
RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types.
Sex, Specimen part, Disease, Subject
View SamplesThe involvement of osteocytes in multiple myeloma (MM)-induced osteoclast formation and the occurrence of bone lesions are still unknown. Osteocytes regulate bone remodeling at least in part through the cell death and apoptosis triggering osteoclast recruitment and formation. In this study, firstly we shown that MM cells increased osteocyte death and affect their transcriptional profile evaluated by microarray analysis up-regulating osteoclastogenic cytokines as interleukin (IL)-11. Consistently we show that the conditioned media of human pre-osteocytes co-cultured with MM cells significantly increased osteoclastogenesis. To translate into a clinical perspective such in vitro evidences, we then performed histological analysis on bone biopsies obtained from MM patients, MGUS and healthy controls. We found a significant reduction in the number of viable osteocytes in MM patients as compared to controls. A significant negative correlation between the number of viable osteocytes and that of osteoclasts was also demonstrated. Moreover, as regards the skeletal involvement, we found that MM patients with bone lesions have a significant lower number of viable osteocyte than those without. Overall, our data suggest a role of osteocytic cell death in MM-induced osteoclast formation in vitro and MM bone disease in vivo in MM patients.
Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation.
Specimen part, Cell line, Treatment
View SamplesHT induces an OXPHOS metabolic editing of ER+ breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy
Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.
Specimen part
View SamplesThe mammalian telomere-binding protein Rap1 was found to have additional non-telomeric functions, acting as a transcriptional cofactor and a regulator of the NF-kB pathway. Here, we assess the effect of disrupting mouse Rap1 in vivo, and report on its unanticipated role in metabolic regulation and body weight homeostasis. Rap1 inhibition causes dysregulation in hepatic as well as adipose function. In addition, using a separation-of-function allele, we show that the metabolic function of Rap1 is independent of its recruitment to TTAGGG binding elements found at telomeres, and at other interstitial loci.
Nontelomeric role for Rap1 in regulating metabolism and protecting against obesity.
No sample metadata fields
View SamplesIdiopathic pulmonary fibrosis (IPF) and non-specific interstitial pneumonia (NSIP) are the 2 most common forms of idiopathic interstitial pneumonia. Response to therapy and prognosis are remarkably different. The clinical-radiographic distinction between IPF and NSIP may be challenging. We sought to investigate the gene expression profile of IPF vs. NSIP
Comprehensive gene expression profiling identifies distinct and overlapping transcriptional profiles in non-specific interstitial pneumonia and idiopathic pulmonary fibrosis.
Specimen part, Disease, Disease stage
View SamplesHGF stimulates mitogenesis, motogenesis and morphogenesis in most epithelial target cells. Selective inhibition of HGF signaling blocks spontaneous metastasis, but not primary tumor growth, in the prostate adenocarcinoma derived PC3M cell xenograft model.
Expression array analysis of the hepatocyte growth factor invasive program.
Cell line, Time
View SamplesAIRmax and AIRmin mouse lines show a differential lung inflammatory response and differential lung tumor susceptibility after urethane treatment, thus constituting a good genetic model to investigate differences in gene expression profiles related to inflammatory response and lung tumor susceptibility. The transcript profile of ~24,000 known genes was analyzed in normal lung tissue of untreated and urethane-treated AIRmax and AIRmin mice. In lungs of untreated mice, inflammation associated genes involved in pathways such as leukocyte transendothelial migration, cell adhesion and tight junctions were differentially expressed in AIRmax versus AIRmin mice. Moreover, gene expression levels differed significantly in urethane-treated mice even at 21 days after treatment. In AIRmin mice, modulation of expression of genes involved in pathways associated with inflammatory response paralleled the previously observed persistent infiltration of inflammatory cells in the lung of these mice. In conclusion, a specific gene expression profile in normal lung tissue is associated with mouse line susceptibility or resistance to lung tumorigenesis and with different inflammatory response, and urethane treatment causes a long-lasting alteration of the lung gene expression profile that correlates with persistent inflammatory response of AIRmin mice.
Transcriptome of normal lung distinguishes mouse lines with different susceptibility to inflammation and to lung tumorigenesis.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation.
Cell line
View SamplesCCAR2 is a nuclear protein recently emerged as a pivotal player of the DNA damage response since it has been found involved in both apoptosis induction and DNA repair. Differently, its role in tumorigenesis and cancer progression is still elusive. In our studies we found that CCAR2 depletion impairs the proliferation of human cancer cell lines, but leaves unaffected the growth of normal immortalized cells. To better investigate this point we performed a genome wide gene expression analyses in U2OS and BJ-hTERT depleted of CCAR2 and we found that loss of this protein causes the deregulation of genes implicated in the AKT pathway specifically in U2OS cells, but not in BJ-hTERT. In accordance with these results we found a reduction in AKT activation in all the tested cancer cell lines depleted of CCAR2, but not in the normal ones. The defective activation of AKT is caused by the upregulation of TRB3 gene in cancer cells depleted of CCAR2 and finally results in the reduction of GSK3 phosphorylation, prevention of G1/S transition and inhibition of cancer cell growth.
A novel crosstalk between CCAR2 and AKT pathway in the regulation of cancer cell proliferation.
Cell line
View Samples