Percellome analysis of whole Xenopus embryos at developmental stage 18
Active repression by RARγ signaling is required for vertebrate axial elongation.
Specimen part
View SamplesPrevious studies have demonstrated that E-proteins induce AID expression in activated B cells. Here we have examined the role of Id3 in germinal center (GC) cells. We found that Id3 expression is high in follicular B-lineage cells but declines in GC cells. Immunized mice depleted for Id3 expression displayed a block in germinal center B cell maturation, showed reduced numbers of marginal zone B cells and class switched cells, were associated with decreased antibody titers and lower numbers of plasma cells. In vitro Id3-depleted B cells displayed a defect in class switch recombination. Whereas AID levels were not altered in Id3-depleted activated B cells, the expression of a subset of genes encoding for signaling components of antigen receptor, cytokine receptor and chemokine receptor mediated signaling was significantly impaired. We propose that during the GC reaction Id3 levels decline to activate the expression of genes encoding for signaling components that mediate B cell receptor and or cytokine-mediated signaling to promote the differentiation of GC B cells. Overall design: B cells derived from control and CD19-Cre;Id3loxP/loxP mice were activated in vitro in the presence of LPS and IL-4 for 24 or 48 hours. RNA was isolated from naïve as well as activated control and CD19-Cre;Id3loxP/loxP mice and analyzed by RNA-seq, in duiplicate.
Id3 Orchestrates Germinal Center B Cell Development.
Specimen part, Cell line, Subject
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesAlternative splicing is a mechanism for increasing the protein variety of a limited number of genes. Studies have shown that aberrant regulations of the alternative splicing of apoptotic gene transcripts may contribute to the development of cancer. In this study, we isolated 4ß-Hydroxywithanolide E (4bHWE) from the traditional herb Physalis peruviana, and analyzed its biological effects in cancer cells. The results demonstrated that 4bHWE modulates the alternative splicing of apoptotic genes (e.g., HIPK3, SMAC/DIABLO, and SURVIVIN), changes the expression level of splicing factors (e.g., hnRNP C1/C2, ASF/SF2, SRp20, and SRp55), and induces histone tail posttranslational modifications (e.g., H3K27me1, H3K27me2, H3K36me3, and H3K79me1). Pretreatment with okadaic acid to inhibit protein phosphatase-1 could partly relieve the effects of 4bHWE on the alternative splicing of HIPK3 and SMAC/DIABLO transcripts, as well as on the dephosphorylation of ASF/SF2. Genome-wide detection of alternative splicing further indicated that several other apoptosis-related genes are also regulated by 4bHWE, including APAF1, CARP-1, and RIPK1. Moreover, we extended our study to apoptosis-associated molecules, detecting an increasing level of CASPASE-3 activity and cleavage of poly ADP-ribose polymerase in 4bHWE-induced apoptosis. Furthermore, in vivo experiments showed that the treatment of tumor-bearing mice with 4bHWE resulted in a marked decrease of tumor size and weight. Taken together, this study is the first to show that 4bHWE affects alternative splicing through the modulations of splicing factors, providing a novel view of the antitumor mechanism of 4bHWE. Overall design: Examination of the global genes with altered alternative splicing in 4bHWE-treated Huh-7 cells.
4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells.
Specimen part, Treatment, Subject
View SamplesA deletion in the CMAH gene in humans occurred approximately 3.5 million years ago. This resulted in the inactivation of the CMP-Neu5Ac hydroxylase enzyme, and hence, in the specific deficiency in N-glycolylneuraminic acid (Neu5Gc), a form of sialic acid, in all modern humans. Although there is evidence that this molecular milestone in the origin of humans may have led to the evolution of human-specific pathogens, how deficiency in Neu5Gc might alter progression of non-infectious human diseases remains unanswered. Here, we have investigated cardiac and skeletal muscle gene expression changes in mdx mice, a model of Duchenne muscular dystrophy (DMD), that do or do not carry the human-like inactivating mutation in the mouse Cmah gene. We have evidence that Neu5Gc-deficiency in humans might explain some of the discrepancies in the disease phenotype between mdx mice and DMD patients.
A human-specific deletion in mouse Cmah increases disease severity in the mdx model of Duchenne muscular dystrophy.
Sex, Age, Specimen part
View SamplesMacrophages readily change their phenotype in response to exogenous stimuli. In this work, macrophages were stimulated under a variety of experimental conditions, and alterations in mRNA levels were analyzed. We identified three transcriptionally related populations of macrophages with immunoregulatory activity. They were generated by stimulating cells with TLR ligands, in the presence of three different “reprogramming” signals; high density immune complexes (IC), prostaglandin E2 (PGE2), or adenosine (Ado). All three of these cell populations produced higher levels of transcripts for IL-10, and growth and angiogenic factors. They also secreted reduced levels of inflammatory cytokines IL-1Beta, IL-6, and IL-12. All three macrophage phenotypes could partially rescue mice from lethal endotoxemia, and therefore we consider each to have immunoregulatory activity. This immunoregulatory activity occurred equally well in macrophages from stat6-deficient mice. The lack of STAT6 did not affect macrophages’ ability to reciprocally change cytokine production or to rescue mice from lethal endotoxemia. Furthermore, treatment of macrophages with IL-4 failed to induce similar phenotypic or transcriptional alterations. This work demonstrates that there are multiple ways to generate macrophages with immunoregulatory activity. These immunoregulatory macrophages are transcriptionally and functionally related, and quite distinct from macrophages treated with IL-4.
The generation of macrophages with anti-inflammatory activity in the absence of STAT6 signaling.
No sample metadata fields
View SamplesmicroRNAs play crucial roles in the early development of an organism. However the regulation of transcription through the action of microRNAs during the initial embyonic development has not been studied.
miR-34 is maternally inherited in Drosophila melanogaster and Danio rerio.
Specimen part
View SamplesUse NGS-transcriptome profiling (RNA-seq) to investigate deregulated genes involved in the proliferative effects of ID-8 and Harmine after hypoxia-induced damage in primary human proximal tubular epithelial cells (HPTECs) Overall design: Examination of differentially expressed genes in HPTECs treated with 1uM of ID-8; or 1uM of Harmine; or EGF in comparison to cells without treatment after 24 hours of hypoxia, in triplicates
A High-Throughput Screen Identifies DYRK1A Inhibitor ID-8 that Stimulates Human Kidney Tubular Epithelial Cell Proliferation.
Specimen part, Subject
View SamplesHistone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic role in transcription and chromatin dynamics remains poorly understood. Here, we investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Our data show that Set1 and Jhd2 predominantly co-regulate transcription. To further understand the role for H3K4 methylation, we overexpressed Flag epitope-tagged SET1-G990E (a dominant hyperactive allele of SET1) in yeast using the constitutive ADH1 promoter (ADH1p). As a control, we also overexpressed Flag epitope-tagged wild type SET1 in yeast. Analysis of gene expression in set1-null, jhd2-null and wild type SET1 or hypeactive SET1-G990E overexpressing mutants together revealed that the transcriptional regulation at a sub-set of genes, inclduing those governing glycogen metabolism and ribosome biogenesis, is highly sensitive to any change (i.e., loss or gain) in H3K4 methylation levels. Overall, we find combined activities of Set1 and Jhd2 via dynamic modulation of H3K4 methylation contribute to positive or negative transcriptional regulation at shared target genes. Overall design: Gene expression changes were generated from five different yeast strains representing wild type control, set1 null and jhd2 null mutants, and wild type SET1 or dominant hyperacive SET1-G990E overexpressing mutants. Three independent biological samples were grown for each strain, total RNA was isolated, libraries were prepared, sequenced, and analyzed separately.
Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription.
Cell line, Subject
View SamplesWe demonstrate that GLUT4 up-regulation significantly increased cell migration and invasion in lower magligance head and neck cancer cell lines in vitro.
Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis.
Specimen part, Cell line
View Samples