Dentatorubral-pallidoluysian Atrophy (DRPLA) is a human polyQ disease caused by the expansion of a CAG strech in the atrophin-1 (at-1) gene. In all vertebrates, a second atrophin gene (at-2) is present and it encodes a related protein void of polyQ tracks. In D.melanogaster there is one conserved Atrophin (Atro) gene, ubiquitously expressed, which contains all functional domains of vertebrate Atrophins, including two polyQ stretches. To understand to what extent transcriptional alterations cause neurodegeneration and are linked to the normal functions of Atrophin, we performed a genome wide transcriptional profiling in our Drosophila models, focusing on primary events that precede neurodegeneration.
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
No sample metadata fields
View SamplesRadial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found the Ets transcription family member Etv5/Erm is strongly regulated by MEK. Our microarray assay showed that Erm is specifically downregulated in Mek mutant brain.
MEK Is a Key Regulator of Gliogenesis in the Developing Brain.
Specimen part
View SamplesThe study demontrates differences in the transcriptome ( both of protein coding transcripts and long non-coding RNAs) in the unilateral ureteric obstruction model of renal fibrosis. Overall design: Renal tissue was studied from animals undergoing sham operation (as controls) or right ureteric ligation. Animals were sacrificed 2 and 8 days following ligation and the right kidney tissue was examined.
Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases.
Sex, Age, Specimen part, Cell line, Subject
View SamplesInflammatory breast cancer (IBC) is an aggressive form of BC poorly defined at the molecular level. We compared the molecular portraits of 63 IBC and 134 non-IBC (nIBC) clinical samples. Genomic imbalances of 49 IBCs and 124 nIBCs were determined using high-resolution array-comparative genomic hybridization, and mRNA expression profiles of 197 samples using whole-genome microarrays. Genomic profiles of IBCs were as heterogeneous as those of nIBCs, and globally relatively close. However, IBCs showed more frequent complex patterns and a higher percentage of genes with CNAs per sample. The number of altered regions was similar in both types, although some regions were altered more frequently and/or with higher amplitude in IBCs. Many genes were similarly altered in both types; however, more genes displayed recurrent amplifications in IBCs.
High-resolution comparative genomic hybridization of inflammatory breast cancer and identification of candidate genes.
Age
View SamplesAnalysis of the response to arginine of the Escherichia coli K-12 transcriptome by microarray hybridization and real-time quantitative PCR provides a first coherent quantitative picture of the ArgR-mediated repression of arginine biosynthesis and uptake genes. Transcriptional repression was shown to be the major control mechanism of the biosynthetic genes, leaving only limited room for additional transcriptional or post-transcriptional regulations. The art genes coding for the specific arginine uptake system are subject to ArgR-mediated repression,
The arginine regulon of Escherichia coli: whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation.
No sample metadata fields
View SamplesYin Yang 1 (YY1) is a multifunctional zinc-finger-containing transcription factor that plays crucial roles in numerous biological processes by selectively activating or repressing transcription, depending upon promoter contextual differences and specific protein interactions. In mice, Yy1 null mutants die early in gestation while Yy1 hypomorphs die at birth from lung defects. We studied how the epithelial-specific inactivation of Yy1 impacts on lung development. The Yy1 mutation in lung epithelium resulted in neonatal death due to respiratory failure. It impaired tracheal cartilage formation, altered cell differentiation, abrogated lung branching, and caused airway dilation similar to those seen in human congenital cystic lung diseases. The cystic lung phenotype in Yy1 mutants can be explained by the reduced expression of Shh in lung endoderm, a transcriptional target of YY1, and the subsequent derepression of mesenchymal Fgf10 expression. Accordingly, SHH supplementation partially rescued the lung phenotype in vitro. Analysis of human lung tissues revealed decreased YY1 expression in children with pleuropulmonary blastoma (PPB), a rare pediatric lung tumor arising during fetal development and associated with DICER1 mutations. No evidence for a potential genetic interplay between murine Dicer and Yy1 genes during lung morphogenesis was observed. However, the cystic lung phenotype resulting from the epithelial inactivation of Dicer function mimics the Yy1 lung malformations with similar changes in Shh and Fgf10 expression. Together, our data demonstrate the critical requirement for YY1 in lung morphogenesis and identify Yy1 mutant mice as a potential model for studying the genetic basis of PPB.
Epithelial inactivation of Yy1 abrogates lung branching morphogenesis.
Specimen part
View SamplesPorcine alveolar macrophages (PAMs) play impoartant role in innate immunity. Haemophilus parasuis is the etiological agent of Glassers disease in pigs.
Transcription analysis on response of porcine alveolar macrophages to Haemophilus parasuis.
Specimen part, Disease, Disease stage
View SamplesScreening small molecules and drugs for activity to modulate alternative splicing, we found that amiloride, distinct from four other intracellular pH-affecting analogues, could normalize the splicing of BCL-X, HIPK3 and RON/MISTR1 transcripts in human hepatocellular carcinoma Huh-7 cells. To elucidate the underlying mechanisms, our proteomic analyses of amiloride-treated cells detected hypo-phosphorylation of splicing factor SF2/ASF and also decreased levels of SRp20 and two un-identified SR proteins. We further observed decreased phosphorylation of AKT, ERK1/2 and PP1, while increased phosphorylation of p38 and JNK, suggesting that amiloride treatment down-regulated kinases and up-regulated phosphatases in the signal pathways known to affect the splicing factor protein phosphorylation. The amiloride effects of splicing factor protein hypo-phosphorylation andnormalizedoncogenic RNA splicing were both abrogated by pre-treatment with a PP1 inhibitor. We then performed global exon array analysis of Huh-7 cells treated with amiloride for 24 hours. Using gene array chips (Affymetrix GeneChip Human Exon 1.0 ST Array of >518000 exons of 42974 genes) for exon array analysis (set parameters of correlation coefficient 0.7, splicing index -1.585 , and log2 ratio -1.585), we found that amiloride influenced the splicing patterns of 551 genes involving at least 584 exons, which included 495 known protein-coding genes involving 526 exons, many of which play key roles in functional networks of ion transport, extracellular matrix, cytoskeletons and genome maintenance. Cellular functional analyses revealed subsequent invasion and migration defects, cell cycle disruption, cytokinesis impairment, and lethal DNA degradation in amiloride-treated Huh-7 cells. This study thus provides mechanistic underpinnings for exploiting small molecule modulation of abnormal RNA splicing for cancer therapeutics.
Small molecule amiloride modulates oncogenic RNA alternative splicing to devitalize human cancer cells.
Cell line
View SamplesSummary: Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function
Melanoma spheroids grown under neural crest cell conditions are highly plastic migratory/invasive tumor cells endowed with immunomodulator function.
No sample metadata fields
View SamplesNotch receptors direct the differentiation of T helper (Th) cell subsets, but their influence on regulatory T (TR) cell responses is obscure. Interruption of Notch signaling in TR cells resulted in a super-regulatory phenotype, with suppression of TR cell Th1 programming and apoptosis as well as Th1 cell responses in systemic inflammation. In contrast, gain of function Notch1 signaling in TR cells resulted in lymphoproliferation, dysregulated Th1 responses and autoimmunity. To determine mechanisms by which Notch signaling may alter TR cell function, we compared the transcriptional profiles of splenic TR cells of Foxp3EGFPCre mice with those of Foxp3EGFPCreR26N1c/N1c (gain of function Notch signaling), Foxp3EGFPCreRBPJ/ (loss of function canonical Notch signaling), and Foxp3EGFPCreR26N1c/N1cRBPJ/ mice (gain of function/canonical loss of function Notch signaling).
Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling.
Sex, Age, Specimen part
View Samples