The neurite outgrowth inhibitory myelin protein Nogo-A has been well studied in the context of central nervous system (CNS) injury and disease. We studied the effects of the application of neutralizing anti-Nogo-A antibodies (11C7 and 7B12) in intact CNS tissue in vitro using rat organotypic hippocampal slice cultures. This study had the purpose of elucidating the role of Nogo-A in the adult intact CNS and determining the consequences of its neutralization through antibody application.
Neutralization of the membrane protein Nogo-A enhances growth and reactive sprouting in established organotypic hippocampal slice cultures.
No sample metadata fields
View SamplesT follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) cells that migrate into germinal centers and promote B cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. Overall design: Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq.
Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes.
No sample metadata fields
View SamplesMitochondrial DNA (mtDNA) mutations are maternally inherited and are associated with a broad range of debilitating and fatal diseases. Assisted reproductive technologies designed to uncouple the inheritance of mtDNA from nuclear DNA may enable women who carry mtDNA mutations to have a genetically related child with a greatly reduced risk of disease. Here we report for the first time that pronuclear transplantation (PNT) between normally fertilised human zygotes provides an effective approach to preventing transmission of mtDNA disease. We found that the procedures previously used to perform PNT between abnormally fertilized human zygotes are highly inefficient when applied to those that undergo normal fertilization. We have therefore developed an alternative approach based on transplanting PN shortly after completion of the second meiotic division rather than shortly before onset of the first mitosis. This approach promotes highly efficient development to the blastocyst stage without affecting nuclear genome integrity. Furthermore, the expression profile of genes encoded by the nuclear and mitochondrial genomes was indistinguishable from unmanipulated control embryos. Importantly, levels of mtDNA transferred with the nuclear genome are below the threshold for mtDNA disease. Together these data indicate that transplantation of pronuclei early in the first cell cycle holds promise as a safe and effective approach to preventing transmission of mtDNA disease. Overall design: Single-Cell RNA-seq analysis of embryos generated by pronuclear transfer and unmanipulated control embryos The relationship between single cell samples and the embryo from which they were derived is indicated in the sample ''characteristics: sample type'' field.
Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease.
No sample metadata fields
View SamplesWe evaluated cutaneous contact hypersensitivity (CHS) in Cnr1-/-/Cnr2-/- animals using the obligate contact allergen 2,4-dinitrofluorobenzene (DNFB), which generates a specific cutaneous T-cell mediated allergic response upon repeated allergen contact. Allergic contact dermatitis affects about 5% of men and 11% of women in industrialized countries and is one of the leading causes for occupational diseases. In an animal model for cutaneous contact hypersensitivity we show that mice lacking both known cannabinoid receptors display exacerbated allergic inflammation. In contrast, fatty acid amide hydrolase deficient mice, which have increased levels of the endocannabinoid anandamide, displayed reduced allergic responses in the skin. Cannabinoid receptor antagonists exacerbated whereas receptor agonists attenuated allergic inflammation. These results demonstrate a protective role of the endocannabinoid system in contact allergy in the skin, and suggest a novel target for therapeutic intervention.
Attenuation of allergic contact dermatitis through the endocannabinoid system.
No sample metadata fields
View SamplesDiagnosis of inflamed human lacrimal gland with standard clinical and histopathology evaluation data is imprecise. A large number of these patients are diagnosed with the catch-all classification of nonspecific orbital inflammation (NSOI).
Gene Expression Profiling and Heterogeneity of Nonspecific Orbital Inflammation Affecting the Lacrimal Gland.
Sex, Specimen part, Disease
View SamplesAdult neurogenesis occurs in mammals and provides a mechanism for continuous neural plasticity in the brain.However, little is known about the molecular mechanisms regulating hippocampal neural progenitor cells (NPCs) and whether their fate can be pharmacologically modulated to improve neural plasticity and regeneration. Here, we report the characterization of a unique small molecule (KHS101) that selectively induces a neuronal differentiation phenotype. Mechanism of action studies revealed a link of KHS101 to cell cycle exit and specific binding to the TACC3 protein, whose knockdown in NPCs recapitulates the KHS101-induced phenotype. Upon systemic administration, KHS101 distributed to the brainandresulted in a significant increase in neuronal differentiation in vivo. Our findings indicate that KHS101 accelerates neuronal differentiation by interaction with TACC3 and may provide a basis for pharmacological intervention.directed at endogenous NPCs.
A small molecule accelerates neuronal differentiation in the adult rat.
Specimen part, Treatment
View SamplesInvestigating neuronal and photoreceptor regeneration in the retina of zebrafish has begun to yield insights into both the cellular and molecular means by which this lower vertebrate is able to repair its central nervous system. However, knowledge about the signaling molecules in the local microenvironment of a retinal injury and the transcriptional events they activate during neuronal death and regeneration is still lacking. To identify genes involved in photoreceptor regeneration, we combined light-induced photoreceptor lesions, laser-capture microdissection (LCM) of the outer nuclear layer (ONL) and analysis of gene expression to characterize transcriptional changes for cells in the ONL as photoreceptors die and are regenerated. Using this approach, we were able to characterize aspects of the molecular signature of injured and dying photoreceptors, cone photoreceptor progenitors and microglia within the ONL. We validated changes in gene expression and characterized the cellular expression for three novel, extracellular signaling molecules that we hypothesize are involved in regulating regenerative events in the retina.
Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish.
No sample metadata fields
View SamplesInadequate protein intake initiates an accommodative response with adverse changes in skeletal muscle function and structure. mRNA level changes due to short-term inadequate dietary protein might be an early indicator of accommodation. The aims of this study were to assess the effects of dietary protein and the diet-by-age interaction on the skeletal muscle transcript profile. Self-organizing maps were used to determine expression patterns across protein trials.
The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The origins of breast cancer prognostic gene expression profiles.
No sample metadata fields
View SamplesSignaling by the cytokine LIF and its downstream transcription factor, STAT3, prevents differentiation of pluripotent embryonic stem cells (ESCs) by opposing MAP kinase signaling. This contrasts with most cell types where STAT3 signaling induces differentiation. We find that STAT3 binding across the pluripotent genome is dependent upon Brg, the ATPase subunit of a specialized chromatin remodeling complex (esBAF) found in ESCs. Brg is required to establish chromatin accessibility at STAT3 binding targets, in essence preparing these sites to respond to LIF signaling. Moreover, Brg deletion leads to rapid Polycomb (PcG) binding and H3K27me3-mediated silencing of many Brg-activated targets genome-wide, including the target genes of the LIF signaling pathway. Hence, one crucial role of Brg in ESCs involves its ability to potentiate LIF signaling by opposing PcG. Contrary to expectations, Brg also facilitates PcG function at classical PcG target including all four Hox loci, reinforcing their repression in ESCs. These findings reveal that esBAF does not simply antagonize PcG, but rather, the two chromatin regulators act both antagonistically and synergistically with the common goal of supporting pluripotency.
esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function.
Cell line, Treatment
View Samples