refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon SRP126516
Transcriptome response of human skeletal muscle to divergent exercise stimuli
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

While acute aerobic and resistance exercise stimulate a number of shared genes, each exercsie mode stimlutes a number of uniquely responsive genes, thus highlighting that different forms of exercise facilitate distinct molecular responses in skeletal muscle. Overall design: Randomized, counter-balanced, cross-over design (n=6) in which subjects performed an acute bout aerobic and resistance exercise separated by ~1 week.

Publication Title

Transcriptome response of human skeletal muscle to divergent exercise stimuli.

Sample Metadata Fields

Sex, Subject, Time

View Samples
accession-icon GSE137990
IL-8 released from human pancreatic cancer and tumor associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Serum levels of interleukin-8 (IL-8) are increased in the serum of people with pancreatic cancer and associated with the loss of body weight and low muscle mass. We have identified that systemic (intraperitoneal) injection of IL-8 into mice induces significant skeletal muscle atrophy. Transcriptional profiling of muscle harvested from these same mice identified the genes and biological processes associated with this IL-8 induced atrophy including gene clusters related to chromatin modification, muscle cell differentiation, and ubiquitin ligase complex.

Publication Title

IL-8 Released from Human Pancreatic Cancer and Tumor-Associated Stromal Cells Signals through a CXCR2-ERK1/2 Axis to Induce Muscle Atrophy.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE30654
Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line, Subject

View Samples
accession-icon GSE30652
Recurrent Variations in DNA Methylation in Human Pluripotent Stem Cells and their Differentiated Derivatives [Illumina HT12v3 Gene Expression]
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Human pluripotent stem cells (hPSCs) are potential sources of cells for modeling disease and development, drug discovery, and regenerative medicine. However, it is important to identify factors that may impact the utility of hPSCs for these applications. In an unbiased analysis of 205 hPSC and 130 somatic samples, we identified hPSC-specific epigenetic and transcriptional aberrations in genes subject to X chromosome inactivation (XCI) and genomic imprinting, which were not corrected during directed differentiation. We also found that specific tissue types were distinguished by unique patterns of DNA hypomethylation, which were recapitulated by DNA demethylation during in vitro directed differentiation. Our results suggest that verification of baseline epigenetic status is critical for hPSC-based disease models in which the observed phenotype depends on proper XCI or imprinting, and that tissue-specific DNA methylation patterns can be accurately modeled during directed differentiation of hPSCs, even in the presence of variations in XCI or imprinting.

Publication Title

Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact