refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 98 results
Sort by

Filters

Technology

Platform

accession-icon GSE58831
Gene expression data from bone marrow CD34+ cells of patients with myelodysplastic syndromes (MDS) and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 168 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We aimed to determine the impact of the common mutations on the transcriptome in myelodysplastic syndromes (MDS). We linked genomic data with gene expression microarray data and we deconvoluted the expression of genes into contributions stemming from each genetic and cytogenetic alteration, providing insights into how driver mutations interfere with the transcriptomic state. We modelled the influence of mutations and expression changes on diagnostic clinical variables as well as survival.

Publication Title

Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP098104
RNA sequencing of erythroid and granulomonocytic colonies differentiated from transduced bone marrow CD34+ cells expressing U2AF1 S34F mutation, U2AF1 wild-type or empty vector control
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mutations of the splicing factor U2AF1 are frequent in the myeloid malignancy myelodysplastic syndromes (MDS) and in other cancers. Patients with MDS suffer from peripheral blood cytopenias, including anemia, and increasing bone marrow blasts. We investigated the impact of the common U2AF1 S34F mutation on cellular function and mRNA splicing in the main cell lineages affected in MDS. We demonstrated that U2AF1 S34F expression in human hematopoietic progenitors impairs erythroid differentiation, and skews granulomonocytic differentiation towards granulocytes. RNA-sequencing of erythroid and granulomonocytic colonies revealed that U2AF1 S34F induced a higher number of cassette exon splicing events in granulomonocytic than erythroid cells, and altered mRNA splicing of many transcripts (expressed in both cell types) in a lineage-specific manner. The introduction of isoform changes identified in the target genes H2AFY and STRAP into hematopoietic progenitors recapitulated phenotypes associated with U2AF1 S34F expression in erythroid and/or granulomonocytic cells, suggesting a causal link. Importantly, we provided evidence showing that isoform modulation of the U2AF1 S34F target genes H2AFY and STRAP rescues the erythroid differentiation defect in U2AF1 S34F MDS cells, raising the possibility of using splicing modulators therapeutically. These data have critical implications for understanding MDS phenotypic heterogeneity, and for the development of new targeted therapies. Overall design: RNA sequencing was performed to identify the aberrant splicing events associated with U2AF1 S34F mutation (n=3) compared to U2AF1 wild-type (n=3) and empty vector control (n=3) in BFU-E and CFU-G/M colonies respectively.

Publication Title

The U2AF1S34F mutation induces lineage-specific splicing alterations in myelodysplastic syndromes.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP050146
RNA sequencing of bone marrow CD34+ cells from myelodysplastic syndrome patients with and without SF3B1 mutation and from healthy controls
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The splicing factor SF3B1 is the most commonly mutated gene in the myelodysplastic syndromes (MDS), particularly in patients with refractory anemia with ring sideroblasts (RARS). MDS is a disorder of the hematopoietic stem cell and we thus studied the transcriptome of CD34+ cells from MDS patients with SF3B1 mutations using RNA-sequencing. Genes significantly differentially expressed at the transcript and/or exon level in SF3B1 mutant compared to wildtype cases include genes involved in MDS pathogenesis (ASXL1, CBL), iron homeostasis and mitochondrial metabolism (ALAS2, ABCB7, SLC25A37) and RNA splicing/processing (PRPF8, HNRNPD). Many genes regulated by a DNA damage-induced BRCA1-BCLAF1-SF3B1 protein complex showed differential expression/splicing in SF3B1 mutant cases. Our data indicate that SF3B1 plays a critical role in MDS by affecting the expression and splicing of genes involved in specific cellular processes/pathways, many of which are relevant to the known RARS pathophysiology, suggesting a causal link. Overall design: RNA-Seq was performed to compare the transcriptome of bone marrow CD34+ cells from eight MDS patients with SF3B1 mutation, four MDS patients with no known splicing mutation and five healthy controls.

Publication Title

Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP149374
RNA sequencing of bone marrow CD34+ hematopoietic stem and progenitor cells from patients with myelodysplastic syndrome and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 765 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in MDS. We have performed a comprehensive analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in bone marrow CD34+ cells of a large group of 82 MDS patients. Splicing factor mutations in MDS result in different mechanistic alterations in splicing and largely affect different genes, but these converged in common dysregulated pathways and cellular processes, including RNA splicing, translation and mitochondrial dysfunction, indicating that these mutations operate through common mechanisms in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology and to the phenotypes associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signalling. Overall design: RNA-sequencing was performed on bone marrow CD34+ hematopoeitic stem and progenitor cells from patients with myelodysplastic syndrome and healthy controls to identify differential splicing between samples with mutations in the splicing factor SF3B1, SRSF2 or U2AF1 comparative to samples from myelodysplactic syndrome patients without mutations in these splicing factors and healthy controls. Processed data for the CD34+ hematopoeitic stem and progenitor cells are available in the files: CPM_table.txt.gz, Count_table.txt.gz and TPM_table.txt.gz. RNA-sequencing was also performed on monocytic, granulocytic and erythroid precursors from the bone marrow of patients with myelodysplastic syndrome and healthy controls to identify aberrant splicing in samples with mutations in splicing factors SF3B1 and SRSF2 comparative from healthy controls. Processed data for the monocytic, granulocytic and erythroid precursors are available in the files: CPM_table_fractions.txt, Count_table_fractions.txt and TPM_table_fractions.txt.

Publication Title

Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
accession-icon GSE19530
RSL4
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Aims to look at the targets of the bHLH transcription factor in Arabidopsis roots.

Publication Title

A basic helix-loop-helix transcription factor controls cell growth and size in root hairs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37127
Positive and Negative Spatial Gradients of High Wall Shear Stress Have Different Effects on Endothelial Gene Expression
  • organism-icon Bos taurus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Intracranial aneurysms tend to form at bifurcation apices, where flow impingement causes high frictional force (or wall shear stress, WSS) and flow acceleration and deceleration that create positive and negative streamwise gradients in WSS (WSSG), respectively. In vivo, intracranial aneurysms initiate under high WSS and positive WSSG. Little is known about the responses of endothelial cells (ECs) to either positive or negative WSSG under high WSS conditions. We used cDNA microarrays to profile EC gene expression exposed to positive WSSG vs. negative WSSG for 24 hours in a flow chamber with converging and diverging channels, respectively. WSS varied between 3.5 and 28.4 Pa in each gradient channel. GO and biological pathway analysis indicated that positive WSSG favored proliferation, apoptosis, and extracellular matrix processing while decreasing expression of pro-inflammatory genes. A subset of characteristic genes was validated using qPCR: Genes for ADAMTS1, CKAP2 and NCEH1 had higher expression under positive WSSG compared to negative WSSG while TAGLN, THBS1, VCAM1, CCL2, and CSF2 had lower expression. To determine if these patterns of expression are also exhibited in vivo, we tested whether the extracellular matrix related protein ADAMTS1 and proliferation were modulated by positive WSSG during intracranial aneurysm initiation. An aneurysm was induced at the basiliar terminus in rabbits by bilateral carotid ligation. WSSG at the bifurcation was determined by computational fluid dynamic simulations from 3D angiography and mapped on immunofluorescence staining for ADAMTS1 and the proliferation marker, Ki-67. Endothelial ADAMTS1 protein and Ki-67 were significantly higher in regions with positive WSSG compared to adjacent sites where WSSG was negative. Our results indicate that WSSG can elicit distinct gene expression profiles in ECs. Increased matrix processing and high levels of proliferation under positive WSSG could contribute to intracranial aneurysm initiation by causing transient gaps in the endothelium or disrupting EC signals to smooth muscle cells.

Publication Title

Differential gene expression by endothelial cells under positive and negative streamwise gradients of high wall shear stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29376
Endothelial Cells Express a Unique Transcriptional Profile under Very High Wall Shear Stress Known to Induce Expansive Arterial Remodeling
  • organism-icon Bos taurus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Chronic high flow can induce arterial remodeling, and this effect is mediated by endothelial cells (ECs) responding to wall shear stress (WSS). To assess how WSS above physiological normal levels affects ECs, we used DNA microarrays to profile EC gene expression under various flow conditions. Cultured bovine aortic ECs were exposed to no flow (0 Pa), normal WSS (2 Pa) and very high WSS (10 Pa) for 24 hrs. Very high WSS induced a distinct expression profile when compared to both no flow and normal WSS. Gene ontology and biological pathway analysis revealed that high WSS modulated gene expression in ways that promote an anti-coagulant, anti-inflammatory, proliferative and pro-matrix remodeling phenotype. A subset of characteristic genes was validated using quantitative polymerase chain reaction (qPCR): Very high WSS upregulated ADAMTS1, PLAU (uPA), PLAT (tPA) and TIMP3, all of which are involved in extracellular matrix processing, with PLAT and PLAU also contributing to fibrinolysis. Downregulated genes included chemokines CXCL5 and IL-8 and the adhesive glycoprotein THBS1 (TSP1). Expressions of ADAMTS1 and uPA proteins were assessed by immunhistochemistry in rabbit basilar arteries experiencing increased flow after bilaterial carotid artery ligation. Both proteins were significantly increased when WSS was elevated compared to sham control animals. Our results indicate that very high WSS elicits a unique transcriptional profile in ECs that favors particular cell functions and pathways that are important in vessel homeostasis under increased flow. In addition, we identify specific molecular targets that are likely to contribute to adaptive remodeling under elevated flow conditions.

Publication Title

Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38486
Transcriptional Profiling of Arabidopsis Root Hairs and Pollen Defines an Apical Growth Signature
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Despite their different origin and function, both pollen tubes and root hairs share the same sort of apical growth mechanism, i.e., the spatially focused cell expansion at the very apex. Ion fluxes, membrane trafficking, the actin cytoskeleton and their interconnection via signaling networks have been identified as fundamental processes underlying this kind of growth. Several molecules involved in apical growth have been identified, but the genetic basis is far from being fully characterized. We have used Affymetrix Arabidopsis ATH1 GeneChips to obtain the expression profiles of isolated Arabidopsis root hairs. A comparison with the expression profile of flow-sorted pollen grains reveals an overlap in the expression of 4989 genes, which corresponds to 42% of the root hair transcriptome and 76% of the pollen transcriptome, respectively. Our comparison with transcriptional profiles of vegetative tissues by principal component analysis and hierarchical clustering shows a clear separation of these samples comprised of cell types with diffuse growth from the two cell types with apical growth. 277 genes are enriched and 49 selectively expressed, respectively, in root hairs and pollen. From this set of genes emerges an apical growth signature containing novel candidate genes for apical growth determination.

Publication Title

Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP147557
Mechanism sharing between genetic and gestational hypoxia-induced cardiac anomalies
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: Mutations in several genetic loci lead to cardiac anomalies, with mutations in transcription factor NKX2-5 gene being one of the largest mutations known. Gestational hypoxia, such as seen in high-altitude pregnancy, has been known to affect cardiac development, and this paper aims to uncover information about the underlying mechanisms of this phenomena. Methods: Wild-type female mice were mated with Nkx2-5 mutant males, to produce offsprings. The pregnant females were then separated into two groups, one left in normal air and one breathing hypoxic, 14% oxygen, air from gestation day 10.5 to 12.5. Hearts were dissected from E12.5 embryos, subjected to RNA purification followed by RNA-seq. Wild-hypoxia and mutant-normoxia were compared to control wild-normoxia. Conclusions: The results of our study provide insights into a common molecular mechanism underlying non-genetic/epigenetic and genetic cardiac anomalies. Overall design: Embryonic mice were produced with either wild-type or mutant genomes, and some from each group were exposed to hypoxia during gestation, then physical analysis and RNA sequencing was done on the embryos.

Publication Title

Mechanism Sharing Between Genetic and Gestational Hypoxia-Induced Cardiac Anomalies.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE11287
Keap1-dependent gene expression determined in the liver using conditional Keap1 knockout mice vs. genetic control mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To compare hepatic gene expression in conditional Keap1 knockout (Alb-Cre:Keap1(flox/-)) and genetic control mice. Disruption of Keap1-mediated repression of Nrf2 signaling was expected to result in increased expression of Nrf2-regulated genes.

Publication Title

Genetic or pharmacologic amplification of nrf2 signaling inhibits acute inflammatory liver injury in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact