To analyse and understand the differentially expressed genes following treatment with synthetic androgen (R1881) Overall design: LNCaP or LAPC4 cells were plated in RPMI 1640 media with no phenol red and with 5% charcoal stripped serum, sodium pyruvate, penicillin and streptomycin. After 48h (to allow adnrogen deprivation), fresh media was added, with 96% ethanol or the synthetic androgen R1881 (10nM concentration). 24h later, cells were harvested for RNA purification using the QIAGEN RNeasy plus purification kit. RNA was then enriched for mRNA and then sequenced.
RNA sequencing data of human prostate cancer cells treated with androgens.
Treatment, Subject
View SamplesBackground. Primary cilia (PC) are solitary antennae present at the cell surface. These non-motile cilia play an important role in organ development and tissue homeostasis through the transduction of the Hedgehog (Hh) signaling pathway. We recently revealed the presence of PC in the epithelium of the developing epididymis, an organ of the male reproductive system whose dysfunction triggers male infertility. Acknowledging that systemic blockade of the Hh pathway trigger epididymal dysfunctions in vivo, our main goals were 1) to portray the epididymal Hh environment, 2) to determine the direct responsiveness of epididymal epithelial cells to Hh, and 3) to define the contribution of PC to the transduction of this pathway. Results. The Hh ligands Indian and Sonic hedgehog (Ihh and Shh) were respectively located in principal and clear cells of the mouse epididymis by immunofluorescent staining. The propensity of epididymal principal cells to respond to Hh signaling was assessed on immortalized epididymal DC2 cells by western-blot, confocal imaging and 3D-reconstruction. Our results indicate that epididymal principal cells secrete Ihh and expose PC that co-localize with the conventional acetylated tubulin/Arl13b ciliary markers, as well as with GLI3 Hh signaling factor. Gene expression microarray profiling indicated that the expression of 43 and 248 genes was respectively and significantly modified following pharmacological treatment of DC2 cells with the Hh agonist SAG (250 nM) or the Hh antagonist cyclopamine (20 µM) compared with the control. Among Hh target genes identified, 6.7 % presented perfect matches for GLI-transcription factor consensus sequences, and the majority belonged to interferon-dependent immune response and lipocalin 2 pathways. Finally, the contribution of epididymal PC to the transduction of canonical Hh pathway was validated by ciliobrevinD treatment, which induced a significant decrease of PC length and the expressional reduction of Hh signalling targets. Conclusions. All together our data indicate that PC from epithelial principal cells regulate gene expression profile through a possible autocrine Hh signaling. This provides new hypotheses regarding the potential contribution of PC and Hh signaling in intercellular cross-talk and immunological regulation of the epididymis.
Hedgehog signaling pathway regulates gene expression profile of epididymal principal cells through the primary cilium.
Cell line, Treatment
View SamplesThe abnormal regulation of amyloid-b (Ab) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer’s disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies we have shown that miR-132/212 deficiency in mice leads to impaired memory and enhanced Tau pathology as seen in AD patients. Here we demonstrate that the genetic deletion of miR-132/212 promotes Ab deposition and amyloid (senile) plaque formation in triple transgenic AD (3xTg-AD) mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Ab metabolism, including Tau, Mapk, and Sirt1. Overall design: We used RNA-Seq to analyse the hippocampus of 3xTg-AD mice lacking the miR-132/212 cluster as well as Neuro2a cells overexpressing miR-132 mimics.
microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice.
Age, Specimen part, Cell line, Subject
View SamplesMyelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable with few means to predict which patients will benefit. To develop a molecular means of predicting response at diagnosis, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients responsive and resistant to decitabine (DAC). While somatic mutations did not differentiate responders and non-responders, we were able to identify for the first time 158 differentially methylated regions (DMRs) at baseline between responders and non-responders using next-generation sequencing. These DMRs were primarily localized to non-promoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. We also found 53 differentially expressed genes between responders and non-responders. Genes up-regulated in responders were enriched in the cell cycle, potentially contributing to effective DAC incorporation. Two chemokines overexpressed in non-responders -- CXCL4 and CXCL7 -- were able to block the effect of DAC on normal CD34+ and primary CMML cells in vitro, suggesting their up-regulation contributes to primary DAC resistance. Overall design: mRNA profiling in bone marrow mononuclear cells (BM MNC) from 14 CMML patients (8 decitabine responders vs. 6 non-responders).
Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia.
No sample metadata fields
View SamplesWhile the hypothalamo-pituitary-adrenal axis (HPA) activates a general stress response by increasing glucocorticoid (Gc) synthesis, biological stress resulting from infections triggers the inflammatory response through production of cytokines. The pituitary gland integrates some of these signals by responding to the pro-inflammatory cytokines IL6 and LIF and to a negative Gc feedback loop. The present work used whole-genome approaches to define the LIF/STAT3 regulatory network and to delineate cross-talk between this pathway and Gc action. Genome-wide ChIP-chip identified 3 449 STAT3 binding sites, whereas 2 396 genes regulated by LIF and/or Gc were found by expression profiling. Surprisingly, LIF on its own changed expression of only 85 genes but the joint action of LIF and Gc potentiated the expression of more than a thousand genes. Accordingly, activation of both LIF and Gc pathways also potentiated STAT3 and GR recruitment to many STAT3 targets. Our analyses revealed an unexpected gene cluster that requires both stimuli for delayed activation: 83% of the genes in this cluster are involved in different cell defense mechanisms. Thus, stressors that trigger both general stress and inflammatory responses lead to activation of a stereotypic innate cellular defense response.
Regulatory network analyses reveal genome-wide potentiation of LIF signaling by glucocorticoids and define an innate cell defense response.
Specimen part, Time
View SamplesPitx3 is a transcription factor that is expressed in all midbrain dopaminergic (mDA) neurons during early development, but later becomes restricted in dopaminergic subsets of substantia nigra compacta (SNc) and of the ventral tegmental are (VTA) that are vulnerable to neurodegenerative stress (MPTP, 6-OHDA, rotenone, Parkinson's disease). Overall, in mice, Pitx3 is required for developmental survival of ventral SNc neurons and for postnatal survival of VTA neurons (after postnatal day 40). With the aim of determining the gene networks that distinguish Pitx3-vulnerable (Pitx3-positive) from Pitx3-resistant (Pitx3-negative) subsets of SNc and VTA, we performed a comparison at the transcriptome level between FAC-sorted mDA neurons of SNc and VTA that were obtained from wild-type and Pitx3-/- newborn mice. The latter mice have already lost the majority of their TH+Calb1- mDA neurons of ventral SNc (Pitx3-dependent), but their TH+Calb1+ neurons of dorsal SNc (Pitx3-independent), including all of VTA neurons (50% are Pitx3-dependent and 50% Pitx3-independent), are unaffected by Pitx3 deletion. At postnatal day 40, Pitx3-/- mice display a marked loss of dopaminergic subsets of VTA that normally co-express Pitx3 and Calb1 (Pitx3-dependent neurons of VTA).
Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra.
Specimen part
View SamplesAnalysis of the transcriptional profiles of mRNA and microRNA in Rasless fibroblasts. 4-Hydroxy-tamoxifen (4-OHT) treatment triggers removal of K-Ras expression in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert ] mouse fibroblasts (named K-Raslox) generating Rasless MEFs which are unable to proliferate, but recover proliferative ability after ectopic expression of constitutively active downstream kinases such as BRAF and MEK1.
Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications.
Specimen part, Cell line, Treatment
View SamplescJun is a transcription factor activated by phosphorylation by SAPK/JNK MAP kinase pathway that has been linked to atherosclerosis. Adenovirus mediated gene transfer of a dominant negative form of cJun in C57BL/6 mice increased greatly the apolipoprotein E (ApoE) mRNA and plasma apoE levels and induced dyslipidmia, characterized by increased plasma cholesterol, triglyceride and VLDL levels and accumulation of discoidal HDL particles. Unexpectedly, infection of ApoE-/- mice with adenovirus expressing dn-cJun reduced by 50% plasma cholesterol, suggesting that the dn-cJun affected other genes that control plamsa cholesterol. To determine the molecular pathways implicated in this process we performed whole genome expression profiling using total RNA from the liver of infected ApoE-/- mice.
A dominant negative form of the transcription factor c-Jun affects genes that have opposing effects on lipid homeostasis in mice.
No sample metadata fields
View SamplesAortic valve regurgitation (AR) imposes a severe volume overload to the left ventricle (LV) which results in dilation, eccentric hypertrophy and eventually loss of function. Little is known about the impact of AR on LV gene expression. We therefore conducted a gene expression profiling study in the LV of male Wistar rats with chronic (9 months) and severe AR.
Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy.
Sex
View SamplesWe applied in parallel RNA-Seq and Ribosome-profiling analyses to immortalized human primary BJ fibroblast cells under the following conditions: normal proliferation, quiescence (induced by serum depletion), senescence (induced by activation of the oncogenic RASG12V gene, and examined at early (5 days; pre-senescent state) and late (14 days; fully senescent state) time points), and neoplastic transformation (induced by RASG12V in the background of stable p53 and p16INK4A knockdowns and SV40 small-T expression. Overall design: RNA-seq, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed. Ribosome profiling, using Illumina HiSeq 2000, was applied to BJ cells under 5 conditions: proliferation, quiescence, pre-senescence, full-senescence, and transfomed.
p53 induces transcriptional and translational programs to suppress cell proliferation and growth.
No sample metadata fields
View Samples